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Abstract. There are a lot of computing systems and packages now, which are indispensable
in solving of mathematical problems. Despite on the intensive using of numerical methods
for modeling and designing of various systems, as well as the presence of a large number of
mathematical software packages, the problem of computational errors estimate is very
acute. A method of numerical results filtering for the solutions of different problems is
presented for estimating the errors and increasing the accuracy. It's shown that the
proposed method avoids the uncertainty and limitations of the Runge rule for estimating
errors in numerical data. Using the example of calculating the value of the derivative of a
simple function at a point, it was shown that after processing of the calculated values
applying the proposed method, they can actually be refined to the reference ones in several
iterations. The technique under consideration was previously used for complex modeling
tasks, which led to a lack of understanding of its practical value. Therefore, in this work, the
investigation was carried out using a simple function as an example, demonstrating the
effectiveness of the proposed technique.
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reliability of calculations; numerical experiment; data processing; computational error;
numerical results; extrapolation; the Runge rule.

INTRODUCTION

The problem of computing results reliability
is under consideration of different authors [1-5].
The idea of numerical filtering application as a
postprocessing of computed data was proposed
by V. P. Zhitnikov and N. M. Sherykhalina [6].
The main idea of the method is constructing of
mathematical model of an error in the form of
sums of terms of some form and consecutive
suppression of these terms. The idea has no
strict mathematical proof, the technique is
purely heuristic. However, its verification on
many complex modeling problems has shown
effective results [7-11]. The conducted
investigations have shown that the method

developed in [6] makes it possible to obtain
reliable estimates of numerical results, and on
the base of them to make practical conclusions
about the simulated phenomena. Application of
the technology of numerical results filtering
allows making these conclusions with high
accuracy.

Unfortunately, due to the complexity of the
considered problems, the technique itself has
been sidelined by the scientific community. In
this paper, we propose to move away from
complex models and focus on the investigation
of the filering process on the example of
calculating the values of elementary functions.
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THE INITIAL DATA FOR FILTERING

So, let us consider a simple example of
calculating the right derivative of the function
cos(x) at the point x = 0.5. We will move to the
point by halving the interval. The software
implementation of the calculation under
consideration is simple (the variables of type
double are chosen):

for (int1=0; 1 <N; i++)
{
h[i] = 1.0/n;
fright[i] = (f(x + h[i]) - f(x)) / h[i];
fcentral[i] = (f(x + h[i]) - f(x - h[i])) / (2 * hIi]);
n=n%*20;
}
We obtain a set of values of the right

derivative fright[i] and central derivative
fcentral[i] forn =1, 2, 4, 8,...524248 (Table 1).

Table 1
Calculated values of the derivatives at a point

n fright fcentral

1 -0.80684536 -0.40342268
2 -0.674560512 -0.459697694
4 —-0.583574772 -0.474447106
8 —-0.532955539 -0.47817801
16 -0.506529003 -0.479113474
32 -0.493058623 -0.479347511
64 -0.486262005 -0.479406031
128 -0.482848701 -0.479420662
256 —-0.481138346 -0.479424319
512 -0.480282248 -0.479425234
1024 —0.479853969 —0.479425462
2048 —-0.479639773 —0.47942552
4096 —-0.479532661 -0.479425534
8192 —-0.479479101 -0.479425537
16384 —0.47945232 -0.479425538
32768 —0.479438929 -0.479425539
65536 —0.479432234 -0.479425539
131072 —0.479428886 -0.479425539
262144 —0.479427212 -0.479425539
524288 -0.479426376 -0.479425539

The standard value of cos(0.5) declared by
well-known online calculators and math
packages is cos(0.5)=-0.479425539. This value
is observed starting from n = 16384 when the
central derivative is considered and it is not
observed when we calculate the right derivative.
Thus, the questions arises: how many correct
signs are present in the obtained result? Which
of the many possible numerical values of the
same parameter is used to further solving of the

problem? By how much has the total calculation
error accumulated due to used inaccurate
values?

NUMERICAL FILTERING

The apparatus of the multicomponent
analysis presented in [6] is a process that has
been called the "filtering." In this context, the
filtering is a set of algorithms and analytical
rules that can be applied to sequences of
calculated values of a required parameter. The
main idea of filtering algorithms is to use the
model of the calculated value error as a sum of
several summands with unknown coefficients

b, — b =cn* + cnFe 4.+ nTRE + A(n), (1)

in this representation bn is the approximate
result (the values bn for our case are presented in
the second and third columns of Table 1); b is
the exact value. The difference between the
exact and approximate solution is the error and
it is expressed by the right part of equality (1).
c; are the unknown coefficients; k,... k, are
arbitrary real numbers (the known ones), such
that k;<k,<...<k;. In most cases, A(n) is taken
as an infinitely small quantity. However, we
assume that the value A(n) has no a priori
estimate. Moreover, it is possible for this value
to increase as n increases (rounding off error,
non-summed terms, residual term of the series).
Also A(n) may be affected by imperfections in
the numerical method itself, as well as by its
hardware-software implementation. The last
factor directly depends on the particular
developer, the equipment and development tools
he uses. Therefore, it is impossible to estimate
in advance the magnitude of a possible error or
deficiency. Consequently, we cannot assume in
advance that A(n) is infinitely small quantity.
The main task of filtering is sterwise removing
of the power components of the sum (1). This
paper considers filtering with multiplication of
the number of nodes (reduction of the interval of
derivative determination) as ni = 2ni-1.

The theoretical basis of the process is
reflected in [12-15]. According to [9], in the
current case the filterinf process coincides with
the Richardson formula:

pU=D_p =1

D _ 4, G- n; i1 ~—
bni - bni + ij—l ’Q_Z (2)
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Thus we run the procedure over all pairs of
values b,,_, b,,. We obtain a dependence in
which the value at each following filtering step
J is expressed by the values obtained at the
previous step of procedure j-1. Thus, we get a
dependence that no longer contains a term with
nki:

b9 = b+ CJ.(i)ln'kf+1+. . +c£j)n_kLA(j)(n),(3)

in the example under consideration, in practice,
the resulting filtered sequences of values of the
right derivative are as follows:

Table 2

Filtering results
n 1 filtration 2 filtration
1
2 —0.542275664
4 —0.492589032 -0.476026821
8 —0.482336306 -0.478918731
16 —0.480102466 —0.479357853
32 —0.479588243 —0.479416835
64 —0.479465388 —0.479424436
128 —0.479435397 —0.4794254
256 —0.47942799 —0.479425521
512 —0.47942615 —0.479425536
1024 —0.479425691 —0.479425538
2048 —0.479425577 —0.479425539
4096 —0.479425548 —0.479425539
8192 —0.479425541 —0.479425539
16384 —0.479425539 —0.479425539
32768 —0.479425539 —0.479425539
65536 —0.479425539 —0.479425539
131072 —0.479425539 —0.479425539
262144 —0.479425539 —0.479425539
524288 —0.479425539 —0.479425539

The j times filtered sequence contains one
less term than b,(l]i_l). The filtering operations

can be sequentially repeated for n=*x.. . n=k¢  if
the initial sequence contains a sufficient number
of terms. Since the considered function is
simple, some conclusions can already be done
from the two new value sequences (Table 2).
First of all, it is obvious that after the first
filtering procedure the sequence (3) is already
obtained, which is close to the reference value
(even the first value, which was initially almost
twice wrong). Secondly, after the second
filtering procedure (j = 2), we obtain values,
almost each of which can already be trusted if
four decimal places are used. In general case, the
numerical values obtained in this way should be

subjected to analysis in order to estimate the
error and justify the validity of these estimates.

This method of calculated values filtering
has a number of limitations for its application.
Its main limitation is the presence of an error
component A(n), the value of which is, of
course, unknown.

Of course, the ways to determine the error
estimate already exist. For example, there is the
Runge rule for this. However, this rule gives a
significant result only if the summand that is
removed at this stage is dominated in the
considered model. And we do not deny that the
last summand A(n) may also dominate over the
others. In that case, the estimates by the Runge
rule may turn out to be much smaller than the
real ones.

We would like to note once more that
filtering provides only additional information
for the researcher in the form of numerical data
sequences (in contrast to the methods for
accelerating convergence). On the basis of the
new regularities, further analysis of the obtained
set of solutions bn is carried out.

SIMULATION RESULTS

One of the convenient ways to analyze the
obtained results of filtering is a graphical
method (Fig. 1). Here Ig & is decimal logarithm
of absolute or relative error, Ign is decimal
logarithm of discretization parameter (the
number of partition intervals, for example).
Thus we can show the accuracy expressed in the
number of exact decimal digits. In this case,
each component of dependence (1) is
represented on such graph by a straight line
segment.

-1gd
10

lg(n)

Fig. 1. Calculation error of the function cos'(x), x =0.5
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Below there are the developed rules that
should be followed in the further analysis of the
graph of the numerical data display.The upper
line is used to estimate the fuzziness of the error
estimate; the second line is used to estimate the
error.

— We do not apply the upper line to estimate
error. It visualizes the fuzziness of the error
estimate. The second line from the upper one is
used for the error estimate.

— The evidence of decreasing error with
increasing n is that all lines of the graph are
close to straight lines. If the lines bend upwards,
it may be a signal that the error passes through
the local minimum (or changes the sign). If this
fact is detected, additional analysis should be
performed.

— The density of points on the graph and the
constancy of the sign of the error estimate also
play a role. If the points are rarely located, there
is a danger of confusing a straight line with one
that is not a straight line. However, different
methods can be used to increase the number of
points without increasing the upper boundary of
the number of nodes n.

Calculating the relative fuzziness of the
estimate, it becomes obviously that performing
2 filtering stages (eliminating 2 components (1))
is sufficient to obtain an accuracy of 10~° for 10
iterations.

APPLICATION OF FILTERING
IN COMPLEX MODELS

In last considered problems, we used
Schwarz integral instead of power series [2]. We
have a general grid, and for each interval the
integral is calculated using the two-point
Gaussian formula which has the 4" order of
accuracy with respect to the length of the
integration segment. The Gaussian formula does
not require calculating of the integrand on the
boundaries of the interval, and this is important.
For some integrals there is a singularity as 0/0
on the boundaries, which requires the
ahhlication of the Lopital rules, and that leads to
extra computation time. This is not needed when
we use the Gaussian formula. But it is necessary
to calculate repeatedly the values included in the
integrand. In order to avoid repeated
calculations, these values are calculated and
memorized in advance. And then the

recalculation with the memorized numbers takes
place. Still, it is certainly more complicated and
longer than calculating the partial sum of a
series. But it gives an effect on the accuracy at
the same dimensionality. One of the influencing
factors is the ability to use irregular grids and the
selection of the type of this irregularity. When
we use a power series (on a circle it turns into
Fourier series, i.e. periodic functions, which
requires uniform grids). This is sometimes fatal.
However, the singuliarities of developed
numerical analytical methods require also
calculation of integrals of functions with, for
example, power fractional singuliarities.
Substitution of the integration variable is
inefficient because functions that depend on x in
the first and other integer powers become power
fractional functions. In this situation, filtering
(in addition to irregular partitioning of the
integration interval) helps a lot. So, there is a
general grid, there is an additional partitioning
of the interval closest to the singularity, and
there is a calculation of the integral on each
partial interval on its grid with decreasing step.
The midpoint rectangles method is used because
it does not require calculating the integrand on
the boundaries of the interval of integration
where there may be a singularity.

CONCLUSION

The  considered  process indirectly
demonstrates the viability of the filtering idea.
Obviously, the idea of refining values and
estimating the error by filtering gives a
qualitative improvement and refinement of the
calculated values. Of course, for such simple
examples, the practical usefulness of the
approach is not obvious, since the values of the
cosine derivative at the point 0.5 are known with
high accuracy. However, for complex
computational algorithms, the ability of reliable
error estimate and refining the results is
indispensable. The estimation results for such
problems have been verified by obtaining the
calculated more accurate values (using the data
type of increased accuracy) [7]. In practice, it is
not rational and not always possible to conduct
calculations of numerical modeling problems
using the data type of maximum accuracy.

Thus, the proposed approach makes it
possible to obtain more accurate data and
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reliable estimates without resorting to complex
computational processes using an over-
precision data type, conducting many
experiments on different sets of input values,
and so on.
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AHHOTauuA: B  HacTosllee BpemA MNPAKTMYECKM BcA
MaTemMaTMKa npeacTaBfieHa B  3/1eKTPOHHOM BuAe B
BbIYUCAUTENbHBIX CUCTEMAX M NaKeTax, KoTopble ABAAIOTCA
HEe3aMEeHUMbIMW B pPelleHMM MaTemaTUYecKMx 3ajaud.
HecmoTps Ha WHTEHCMBHOE TMPUMEHEHUE YUCNEHHbIX
MeTOA0B ANA  MOAENMPOBAHMA U MPOEKTUPOBAHUA
Pas/IMYHbIX CUCTEM, a TaK¥e Haaumuve 60AblIoro
KO/MIMYecTBa MaTeMaTUYECKMX MNPOrpamMMHbIX MaKeTos,
npob6sema OUeHKU BbIMUCAUTENBHbBIX NOrPELHOCTEN CTOUT
ouYeHb OCTpPO. B paccmaTpuBaemoli pabote npeacrasieH
MeTog, GUNLTPALUN YNCAEHHbIX PE3y/bTaToB A/1A OLLEHKK
OWMOBOK U MNOBbLIWEHNA TOYHOCTMK. MokasaHo, u4TO
npesoXKeHHbIN MeToA, nossonset nsbexartb
HeonpeaeneHHoOCTU W OorpaHuYeHnin npasun PyHre ans
OLEHKM OLWMNBOK YMCNEHHbIX JaHHbIX. Ha npumepe
BbIYMCNEHUA 3HAYEHUA NPOU3BOAHON NPOCTON GYHKLMUKN B
Toyke 6blNO  NOKasaHo, 4TOo nocne  06paboTku
BbIYMCNEHHbIX 3HAYEHWA C MNOMOLLbI NpPeasoXEeHHOro
MeTo/a, UX PeasibHO YTOYHMTb A0 3Ta/IOHHbIX 338 HECKO/IbKO
utTepaumi. PaccmatpuBaemas MeToAMKa paHee
NPUMMeHANACh ANA YTOYHEHUA YNCNEHHbIX PE3YNbTaTOB NpuU
peleHnn 3aZay CO CAOXMKHbIMU MOLENAMMU U YUCNEHHO-
aHANUTUYECKMMM  pelleHuaMM,  4YTo  npueBeno K
HENOHWMaHWIO ee MpaKTUYeckoW LeHHocTU. MosTomy B
LaHHOW paboTe npoBefeHO MCCief0BaHUE Ha Mpumepe
NPoCcTon GYHKUMK, AeMOHCTpupytowee 3GPeKTUBHOCTb
npegsaraemon MeToAMNKM.

KnioueBble €noBa: OLEHKA MOrpewHocTy; MaTemaTuyeckoe
MOAENNPOBAHNE; YUCEHHaA (UAbTPaLMA; HaOEXHOCTb
BbIYMCNUTE/IbHBIX PE3Y/IbTaTOB; YNC/IEHHbINA SKCNEPUMEHT;
06paboTka  AaHHbIX; MOrpPewWwHocTb  BbIUMCAEHWIA;
YMCNEHHbIE pe3y/bTaTbl; IKCTPANoOAALMA; NPaBuao PyHre.
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