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NUMERICAL INVESTIGATION OF THE DIFFERENT INTERPOLATION METHODS
N. M. SHERYKHALINA, A. A. SOKOLOVA, E. R. SHAYMARDANOVA

Abstract. The article is devoted to the approximate solution of some problems of computational mathematics.
Practical interpolation for problems solving is discussed. The various interpolation methods as the Lagrange
polynomial, the Newton polynomial and the cubic spline are under consideration and the detailed comparative
analysis of these methods is carried out. The described methods are applied for restoration of functional de-
pendences on the example of an elementary function. A numerical experiment is demonstrated to restore
the functional dependence by the described methods. A mathematical model of the interpolation error is pre-
sented. With the help of two polynomials constructed for two different meshes, a polynomial of higher degree
is obtained. It is shown that according to the recurrent Aitken ratio the obtained polynomial of a higher degree
can be used to estimate the error of the results of the calculated values. The computation results and the error
estimations are obtained with great accuracy. The results of the various interpolation methods are compared.
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INTRODUCTION

We have known interpolation since ancient times. It was used by Babylonian and ancient Greek
astronomers and mathematicians. A description of linear interpolation can be found in an ancient
Chinese mathematical text called The Nine Chapters of the Art of Mathematics, dating from 200 BC
to 100 AD. The further development of interpolation is due to such outstanding mathematicians
as Newton, Leibniz and Gregory. And their works are still used by mathematicians all over the world.

Today we have a large selection of different interpolation methods. For specific tasks, we can
choose the solution that suits best. With the advent of computer, the numerical methods are often
applied for solving interpolation problems. Specialists of various professions need to make a large
number of calculations with the least error. The term interpolation means the search for intermediate
values of a quantity based on some of its known values. In scientific and engineering calculations it is
necessary to operate with sets of values obtained by experiment or by random sampling quite often.
On the base of these sets we need to construct a function that could receive other obtained values with
high accuracy. This is called the curve fitting. Interpolation is a kind of approximation in which
the curve of the constructed function passes exactly through the available points.

But interpolation problem is incorrect one. The problem of computing results reliability is under
consideration of different authors [1-6].

THE LAGRANGE AND NEWTON POLYNOMIALS

Description of the methods and formulation

Let some function f (x) be given by its values y;=f (x;) at a discrete set of points x;, j=0, ..., m.
It is required to approximately determine the analytical form of this function and, thus, to be able
to calculate its values at intermediate points x € (xj, Xj+1). We will seek the interpolating function
in the form of an algebraic polynomial

P, (x) = Yo aix’. )

Since the polynomial Pn (x) at nodal points must coincide with the given values of the function,
the problem is reduced to solving the system of linear algebraic equations with respect to the un-
knowns a;
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roaix; =y, j=k, ., k+n )

Let us consider the Lagrange interpolation polynomial. This polynomial was published by Joseph-
Louis Lagrange in his work in 1795. The solution of the system can be represented in the form of
the Lagrange interpolation polynomial:

Pa() = Ln () = Sy TSR 220 3)
i#j t

But Lagrange interpolation has one significant drawback. If it is necessary to obtain Ln+1(X)
by adding the node xn+1 to the existing interpolation nodes, all calculations have to be performed.
The interpolation polynomial in the Newton’s form has not this drawback.

To find the interpolation polynomial in Newton's form we introduce the notation fx =f (X).
The expression for the divided difference of the order n is written in the form

-1

k+n k+n
f(xerk+1,xk+n) = Z fi l_l(xj - xi)
=k i=k

i#j
The Newton interpolation polynomial is the algebraic polynomial:

ln(x) = fOx) + (= x5 f (pes Xpern) + (6 = x3) (6 = Xpqer) oo (6 = Xpegn—1)f (ks Xpe 15 -0 Xigm)- (4)

This polynomial is identically equal to a polynomial of degree n written at the Lagrange form
or at some other form due to the uniqueness of the interpolation polynomial.

The problem of computing results accuracy is under consideration of different authors [7-11].
The following approach can be applied for error estimation. Let's present a mathematical model
of the interpolation error. We consider two sets of nodes: x, j = 0,..,N1 and x®, j = 0,..,N2 and two
polynomials are built for them. Then we can write respectively two expressions

PV - ) = eI (x = %) + 8,0, BP0 = £ = T2 (x = 12 + 8,(0).

Here c is the value assumed to be independent of the position of the nodes; ki and k> are the num-
bers of the initial nodes used by the interpolation formula; 51(x) and &2(x) are small quantity in com-
parison with the first term. Neglecting small quantities, we solve the system of equations and find
the estimate of the interpolation error:

GROEOIE

R = f) =

ki+m (l)
Here we denote IT; = [] (x—xj )
J=k;
Then more accurate value of the function is carried out:

P (0N, — PP ()1,
m, — I, '

fGx) =

Let us consider the case when the first set consists of the nodes with numbers from k to k+n,
and the second set with numbers from k+1 to k+n+1. Then



N. M. Sherykhalina, A. A. Sokolova, E. R. Shaymardanova e Numerical investigation ... 69

[0 - B G0 T2 (x — ) —

() €Y
= AP0 - P ] ——,
Hf:;?:ll X — xj) - H;‘:;?(x - xj) [ " " ]xk+n+1 — Xk

PV () - f(x) ~

fx) ~ ZemniZ® pM)(yy 4 X%k p@ () = o (x). ()

Xk+n+1~Xk Xk+n+1~Xk

The function (9) is actually an interpolation polynomial of degree n+1 because:
— Pgn41y(x) is an algebraic polynomial of degree n+1;

— in nodes with numbers from i=k+1 to i = k+n both polynomials BV (x;) and P®(x,),
and therefore P, 1)(x;), coincide with f (x;);

- P(n+1)(xk) = Pn(l)(xk) = f(x);

- P(n+1)(xn+k+1) = PrEZ)(xn+k+1) = f(Xntk+1)-

The formula (5) is called the recurrent Aitken ratio. The obtained polynomial of a higher degree
can be used to estimate the error of the results of the calculated values of both polynomials P,fl)(xi)

(2)

and B, (x;).

Numerical experiment
Let f()=cos(x), =22y =Ff(y),j=0.,m ad m=14 The quantity
An = |Pn(X) - Pn+1(X)| represents the error of interpolation; a¢@ is the difference between the inter-

polated and the exact value; k, =1-A® /o, makes sense of the coefficient of refinement of the in-

terpolated value. In order to construct the similar table, we take two sets of points x¥ from 1 to n+1
and x® from 0 to n. From the table 1 and the table 2 we can see that the values obtained with using
the interpolation polynomial in the form of Lagrange and Newton do not differ significantly.

Table 1
Lagrange Polynomial Interpolation

n Pn(X) An At Ka
1 0,997 1,56E-03 000157 | -0,00554
2 0,986 1,48E-05 1,11E-05 | 0,247765
3 0,961 6,02E-06 6,07E-06 -0,008
4 0,924 1,34E-07 121E-07 | 0,096955
5 0,875 3,85E-08 3,88E-08 | -0,00892
6 0,816 1,38E-09 131E-09 | 0,050273
7 0,746 2,95E-10 2,98E-10 | -0,00953

0,666 1,48E-11 1,44E-11 0,666
9 0579 2,47E-12 2,49E-12 0,579
10 0,484 1,64E-13 1,61E-13 0,484
11 0,383 2,09E-14 2,15E-14 0,383
12 0277 1,89E-15 9,99E-16 0,277
13 0,168 4,50E-15 4,50E-15 0,168
14 0,056 -1,05E-14 0,056
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Table 2
Newton Polynomial Interpolation
n Pn(X) An At Ka
1 0,997 1,56E-03 000157 | -0,00554
2 0,986 1,48E-05 1,11E-05 | 0,247765
3 0,961 6,02E-06 6,07E-06 -0,008
4 0,924 1,34E-07 1,21E-07 | 0,096955
5 0,875 3,85E-08 3,88E-08 | -0,00892
6 0,816 1,38E-09 131E-09 | 0,050273
7 0,746 2,95E-10 2,98E-10 | -0,00953
8 0,666 1,48E-11 1,44E-11 0,666
9 0579 2,47E-12 2,49E-12 0,579
10 0,484 1,64E-13 1,61E-13 0,484
1 0,383 2,13E-14 2,17E-14 0,383
12 0277 1,33E-15 1,22E-15 0,277
13 0,168 0 6,38E-16 0,168
14 0,056 1,80E-14 0,056
Table 3
Interpolation by Lagrange Polynomial with Two Points Sets
n Pn(X) An At Ka
1 0,998 1,48E-05 8,65E-06 | 0,414343
2 0,986 3,61E-06 3,66E-06 | -0,01229
3 0,961 5,75E-08 4,82E-08 | 0,162379
4 0,924 1,28E-08 1,30E-08 | -0,01431
5 0,875 3,75E-10 343E-10 | 0,084261
6 0,816 6,81E-11 691E-11 | -0,01554
7 0,746 2,96E-12 2,81E-12 | 0,050146
8 0,666 4,36E-13 4,43E-13 -0,017
9 0579 2,59E-14 2,50E-14 0,034
10 0,484 2,94E-15 2,61E-15 0,113
11 0,383 3,33E-16 4,44E-16 -0,333
12 0277 4,44E-16 3,89E-16 0,125
13 0,168 1,94E-15
14 0,056 8,20E-15

One can see from table 3, that interpolation using the Lagrange interpolation polynomial with two
sets of points accelerated the refinement of the value.

Application of logarithmical scale for visualization of error representation are described
in [12-14].
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Figure 1: Computing results for the Lagrange interpolation polynomial:
a— An = |Pn(X) - Pn+l(X)|; b - An = |Pn(X) - f(X)l

It is convenient to represent the results of interpolation and the estimation of error on the graph
in the form of the dependence of — IgA» on X = (X — X)/(Xj+1 — Xj), X € (Xj, Xj+1). In Figure 1 and Figure 2
the different curves correspond to different n (j = 2). The pairwise approach at location of the curves
is explained by the fact that the function cos (x) is even, and only even terms present in its expansion
for powers of x. In Figure 1, b and 2, b it is shown that curves are similar to the curves in Figure 1, a
and Figure 2 accordingly, but the exact values of the cos (x) function are used to estimate the error.
It is also seen that the curves in Figure 2 correspond to the curves in Figure 1 for n + 1.

160 |~ lgﬂlﬂ 160 |~ lg‘ﬁ”

14,0 -— _o———* =10 14p .___.—.__.__.____‘.____.___’-——-" w=10

14, L & : 4 . 4 o _:____.______.___._-Q n=0 -— - ol - _._____.,__.--. "=_g

: —s e -+ ———® n=5 | 120 S hd - e —2 =S

12,0 — b e - — n _5' : -— . - - # =

10,0 '—-—-p__:__:_—-—-—:—-—""_'_"'_—';. neg 100 ’_‘—-ﬂ——:——l—‘t—"_'_‘_:__:’_'_____._--—: n=0
— > —a— " ;=5 -— 4 4 - ' e =2

80 * e i =a 8,0 n=4q

n=3 ~ n=3

6,0 e n=2 6,0 — e———"* n=2
— ° —- * » n=1 -4 — - > n=i

4,0 4,0

20 2,0

0,0 0,0 ~

02 " 06 08 T 1 02 0.4 0,5 08 X1
a b

Figure 2: Computing results for the Newton interpolation polynomial with two sets of points:

CuBIC SPLINE

Description of the method and formulation

Let the segment [a, b] be divided into n partial segments [xi, xi+1], where xi < Xi+1, 1 =0, 1, ..., n-1,
Xo= a, Xn = h. Denote h; = xi — Xi-1. In the case of a uniform partition h = (b-a)/n, x; = a + ih.

The function f (x) is given by its values at the nodal points x.

A spline is a function that, together with several derivatives, is continuous on the entire given seg-
ment [a, b], and on each partial segment [Xx;, xi+1] separately is some algebraic polynomial.

f1(x),x € [x,x1],

ey =) L@x € k)

fn(x): X € [xn—lr.;c.n]-
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For this study a spline of the third degree was chosen, which has continuous the first derivative
on the segment [a, b]. Let's denote it by Sz (x). On each segment, the cubic spline has the following
form:

S3(x) = ajo + a1 (x — ;) + app(x — x)* + az(x — x)3,x € [x;, %;41]
and satisfies the following conditions:
S3(x)=f(x), i=0,..,n (6)

Based on the fact that the spline on each segment is determined by four coefficients to construct it
on the entire segment, it is required to determine 4n coefficients. For their unambiguous definition,
we need to set 4n equations. In addition, the condition (6) gives 2n equations, since this polynomial
must pass through two given points: the beginning and the end of the segment. Moreover, the function
S3(xi) satisfying these conditions is continuous at all internal nodes.

The condition of continuity of the derivatives of the spline s3(x), S3(x) at all internal nodes x;,
i =1, ..., n-1 of the grid, gives 2(n-1) equalities. In total, we get 4n-2 equations.

Two additional (boundary) conditions are usually set in the form of restrictions on the value of
the derivatives of the spline at the ends of the interval [a, b].

In order to construct an interpolation cubic spline we use the following algorithm.

Let each value of the argument x;, i = 0, ..., n corresponds to the value of the function f(xj) = yiand it
is required to find a functional dependence in the form of a spline satisfying the following require-
ments:

1) The function S3(x) is continuous on the segment [a, b] together with its derivatives up to
the second order inclusive.

2) Ss(x)=vyi, i=0,1,..,n
3) The function Sz(x) satisfies one of the variants of the boundary conditions.
The formulated problem has a unique solution.

The second derivative S"3(x), which is expressed by a continuous linear function, can be repre-
sented as the Lagrange polynomial of the first degree:

" _Xi—X X—Xij—1
S3'(x) = n mi_q + T

where hi = Xi-Xi-1, Mi = S"3(Xi).

We integrate twice both parts of the expression and use the conditions of continuity of the function
and the first derivative, so, the following system of equations is obtained:

Em- + hi + hiiq e+ hiy1 I Yier Vi Vi~ Vi1
6 -1 3 L 6 i+1 hi+1 hl )

Finally, solving the system of equations with respect to the parameters m;, we get:

X—Xi—1

)3 —h? (x; oy )P —h? (rxy —
Sy(x) = T ThiGaD) ) G Xi) h xl-l)mi+%yi_1+ fy,

h; t h;

This formula is used to calculate the values of the function Sz(x). It is important to note that the sys-
tem of equations is solved by the sweep method.

Numerical experiment

Let f(x) = cos(x), we interpolate the function on the segment [0, =] with a uniform partition with
doubling the number of segments n. The boundary conditions are the equality of the second derivative
to 1 at the left boundary of the segment and to — 1 at the right one.
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The column Amax represents the maximum error |S3(x) — f(x)|, calculated at the points located be-
tween the grid nodes, Ka is the ratio of the error of the previous line to following one (coefficient
of error reduction for doubling n).

It can be seen in table 4 that Ka retains the value corresponding to the fourth order of accuracy
(Ka= 2% up to values of n = 1000 — 3000, above which the rounding error prevails in the total error
of the result.

Table 4
Cubic Interpolation with Correct Boundary Conditions
n Amax Aoy Ka
5 1,02E-03
10 | 629E05 | 6,39E-05 16,25636
20 | 391E-06 | 3,93E-06 16,0827
40 | 244E07 | 2,45E-07 16,02083
80 | 153E-08 | 1,53E-08 16,00522
160 | 9,54E-10 |  9,54E-10 16,00131
320 | 596E-11 | 5,96E-11 16,00031
640 | 3,73E-12 | 3,73E-12 16,00015
1280 | 2,33E-13 | 2,33E-13 16,00286
2560 | 1,45E-14 |  146E-14 16,00763
5120 | 1,11E-15 | 9,09E-16 13,1
10240 | 2,22E-16 |  2,78E-16 5

It should be noted that for the practical application of the error estimate, it is necessary to know
the upper estimate of the k™ derivative of the function f(x). But this is not always possible. To estimate
the error, you can apply a rule using the regularity of the dependence of the error on h or n. It is
observed that with an increase in the number of nodes, the interpolation error at any particular point x
may vary irregularly, since the position of this point relative to neighboring nodes (the ratio
(x—Xj-1)/(xi—xj-1)) may vary for different n. Using the example of this numerical experiment, it is seen
that the maximum error on the segment [0, r] decreases by a factor of Ka~ 2X when n is doubled.

Using the property of conservation of the Ka value for the maximum error Amax (n), we can obtain
an estimate in the form

Amax
Ay (2n) = 2m2x®

For this it is necessary to have a method for estimating the quantity Amax(n), even if the exact value
of the interpolated function f (x) is unknown. You can use the following method, which consists
in comparing the values of S3(x) calculated for different numbers of segments into which the segment
[a, b] is divided n and 2n times. When n is doubled with a uniform or non-uniform partition, n new
nodal points Xj-1/» appear, lying between the common nodes x;.1 and x; (table 4). Then, as the estimate
for Amax(n), we choose

Amax(n) ~ maxlsjsnlssgn(xj—l/Z) - S?(Xj_1/2)|.

The correct boundary conditions are chosen for Table 4. However, for other boundary conditions,
a relatively large interpolation error is observed. For clarity, the result is presented in the form of
the Table 5.
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Table 5
Cubic Interpolation with Incorrect Boundary Conditions
n Amax Aoy Ka
5 1,90E-02
10 | 458E-03 | 4,74E-03 4,14E+00

20 1,13E-03 1,14E-03 4,04E+00

40 2,82E-04 2,83E-04 4,01E+00

80 7,06E-05 7,06E-05 4,00E+00

160 1,76E-05 1,76E-05 4,00E+00

320 4,41E-06 4,41E-06 4,00E+00

640 1,10E-06 1,10E-06 4,00E+00

1280 2,76E-07 2,76E-07 4,00E+00

2560 6,89E-08 6,89E-08 4,00E+00

5120 1,72E-08 1,72E-08 4,00E+00

10240 | 4,31E-09 4,31E-09 4,00E+00

CONCLUSIONS

Thus, after carrying out the numerical experiment, we can say that the results of interpolation
obtained for interpolation polynomials in the Lagrange and Newton forms do not have significant
differences in accuracy. Two sets of n points forming from one data set and two polynomials of
a degree n allows getting an interpolation polynomial of n + 1 degree, which is used to estimate the er-
ror of both polynomials of n degree. An insignificant difference between the graphs in Figure 1, a, b
and Figure 2, a, b indicates a high accuracy of the estimation of the interpolation error. The degree of
polynomials does not depend in any way on the number of grid nodes, and therefore it does not change
with its increase. Unlike the Lagrange interpolation polynomials, the sequence of cubic interpolation
splines for the uniform grid always converges to an interpolated continuous function. The disad-
vantage of a cubic spline is the choice of the boundary conditions. With the help of the boundary
conditions, we can include the parameters in the construction of the spline and control the spline
behavior. When choosing incorrect boundary conditions (sometimes it is proposed to take
S"3(a) = S"3(b) = 0), the accuracy of interpolation of the function and its first derivative, as a rule,
decreases.
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METAAAHHbIE / METADATA

HasBaHue: YncneHHoe nccnegosaHme Pa3NNYHbIX METOO0B UHTEPNONALUUN.

AHHOTaumA: CTaTbA MOCBALEHA MPUBAUMKEHHOMY pPELIeHUI0 HEKOTOPbIX 33a4ay BbIUMC/AUTENbHOW MaTeMaTUKU.
Ob6cykpaeTca NpaKTMYEeCKaa MHTEPNoOAAUMA ANa  pelleHus  3ajad. PaccmaTpuBaloTca  pas/MyHble  MEeToAbl
WHTEPNONALMM, TaKMe KaK MHOrousieH JlarpaHia, MHorousneH HblOTOHa M KybuuyecKuid cnnaliH, U npoBogmTcA
NoApobHbI CPaBHUTENbHBIN aHanM3 3TUX MeTogoB. OnucaHHble MeTodbl MPUMEHSAIOTCA A/ BOCCTAaHOBEHUSA
OGYHKUMOHANbHBIX 3aBUCMMOCTE Ha MpuMepe 3/eMeHTapHoOW ¢yHKUMU. [MOoKasaH YMC/IEHHbIW 3KCMePUMEHT
N0 BOCCTAHOB/NEHUIO GYHKLUMOHANbHOM 33aBUCMMOCTM OMWCaHHbIMM MeTogamu. [peacTaBneHa MaTemaTuyeckas
MoZeNb MOrpewwHocTM uHTepnonaummn. C NOMOLWbIO ABYX MNOJIMHOMOB, NOCTPOEHHbIX HAa ABYX PasHbIX CEeTKax,
noayyaeTca MHorouneH 6osee BbICOKOW cTeneHW. [MOKasaHO, YTO MO PEeKyppPeHTHOMY Ko3pdMUMEHTY DiiTKeHa
NOAYYEHHbI MHOTouNeH 60/iee BbICOKOM CTENEeHN MOKET BbiTb MCNOAb30BaH AN OLEHKM NOrpewwHOCT! pPesynbTaToB
BbIYMC/IEHHbIX 3HAYeHWW. Pe3ynbTaTbl PacyeToB M OLEHKM MOrPEelHOCTeN MOoJlydYeHbl € 6OMbLION TOYHOCTBIO.
CpaBHUBAOTCA pe3y/IbTaTbl PA3/IMYHbIX METOL,0B MHTEPMONALMM.

KntoueBble cnoBa: nHTepnonaums; YNC/IEHHbIN MeToA; MHoro4ieH JlarpaHa; MHoroysieH HbloTOHa; cnnanH; mozaenb
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