2025. Vol. 7, no. 3 (22), pp. 105-116

http://siit.ugatu.su

SYSTEMS ENGINEERING AND INFORMATION TECHNOLOGIES Scientific paper

UDC 621.9.047

DOI 10.54708/2658-5014-SIIT-2025-no3-p105

EDN HDLEEM

Smart Construction: Integrating Technology into Modern Building Practices

ARSHDEEP • KONIKA RANI • HARSH KUMAR

Abstract. Building companies need to have a strong online presence in order to build their reputation, draw in customers, and foster business expansion in today's digitally native world. This paper describes how a construction company's website was designed and developed to be dynamic and easy to use in order to increase online visibility and client interaction. In order to guarantee smooth accessibility across platforms, including PCs, tablets, and smartphones, the website is constructed utilizing contemporary responsive web technologies. To improve user experience and promote client enquiries, key elements include comprehensive service descriptions, project galleries, client testimonials, and simple access to contact details. The platform ensures good search engine results and increased traffic by incorporating SEO best practices and social media integration. The website functions as a potent instrument to generate leads and propel business expansion by optimizing lines of communication and exhibiting the organization's collection of work. The ultimate objective is to establish the business as a reliable leader in the cutthroat construction sector, build client confidence, and facilitate long-term expansion via improved online visibility.

Keywords: SEO; Website; CSS; JavaScript.

INTRODUCTION

Many industries, including construction, especially need to have a solid online presence in today's digital age. A well-done website is an excellent means to attract more customers, show your professionalism, and build trust. We are making a website for the construction company in order to expand their digital presence and offer potential customers easy access to information. The construction industry of todays is quite a cutthroat competitor and you need to use every single advantage that exists. A good website will go far in this, as it can show a detailed breakdown of services offered and past projects created, along with simple contact info for those seeking to enlist the firm's expertise.

The new website will incorporate today's web technology and follow the best practices for design, translating to a higher quality of workmanship that reflects our brand. It does a great job detailing everything you need to know when designing fully responsive and mobile first website, which look visually stunning among all platforms (desktops, tablets, and smartphones) that represented on the market.

Through a strategic combination of informative content and intuitive design, the website will serve as a central hub for all online marketing efforts, positioning the company as a leader in the construction industry.

Features of the site include description of services and testimonials. The law firm creates interests for others through conversion points of visitor engagement; consider these as prompt points to turn interest into enquiry. This project is a complete transformation of an entire digital platform. The final result not only increases visibility of the construction company but also helps in client retention and business growth as well.

With an elegant blend of information and style, the site will become a destination for all online marketing, which in turn will establish this company as a construction industry leader.

A. Problem Definition

For businesses in the construction industry, this presents a problem: modernizing and optimizing these different platforms (often online based) to resonate with their potential target clients. It is, however, true that many construction companies rely on the traditional old school methods and miss out tools that make it easier for them to capture clients online. This gap can lead to troubles in attracting new clients, displaying completed projects, and building trust in a competitive market. For the new website of this construction company, these are some important issues that must be addressed:

1) Nothing Substantial Online to Attract Investors:

As of now, the company has no professional or even complete website up where they can visit and tell their story well enough. Many prospective clients prefer to find construction services via online search, meaning the opportunity is lost due to lack of a strong web presence.

2) Inadequate Company Information and Presentation:

It is difficult to provide a clear picture of the services offered, past work done by the company, or the team behind it with an ill-structured website. Potential customers may have a hard time understanding what the company actually does and how much success they had.

3) Poor User Experience:

Past or prospective users may struggle to find information on dated, poorly-designed sites. The failure of having a responsive design can lead to poor performance on the phones, high bounce rates and, eventually, loss of business opportunities.

4) Lack of Client Engagement:

A portfolio without any form of interaction as contact forms, client testimonies, or even social media can repel potential clients.

B. Needs & Significance

Needs:

- *Improved Visibility*: Standing out in the construction sector requires a company to have an effective online presence. One of the essentials is having a professional website to increase visibility and appeal to potential clients who use internet searches.
- *Information Availability*: The site must detail the company's services, previous works, team skills and also have contact details for reach. It should help the potential customers to understand what the company is offering and why they should choose it over competitors.
- *User Experience*: A responsive design is required to make sure that the Website can be accessed and navigated easily from a desktop, tablet, or mobile. This elevates user experience and decreases the bounce rate.
- Reinforce the Brand: The perception of a brand is largely influenced by how well its website was designed. We want clients to see it as being professional, trustworthy, and high quality. This will help in giving them confidence in the service that we are offering.

Significance:

- Competitive Edge: In a saturated marketplace, having professional website helps to add legitimacy. This sets the company apart from the older school companies or ones that do not have royalty site presence, making it more appealing for potential clients.
- Business Growth: Increased visibility and engagement can result in a higher volume of enquiries and projects through the website, which will not only result in economic growth but also helps in social growth of company.
- Credibility and Trust: A professional website creates credibility, if you have a decently designed site then your start-up has some lever of trust with users. Past projects, client testimonials

and deeper service information allow new potential clients to become super confident of their experience.

LITERATURE REVIEW

The construction industry is highly competitive, and companies must leverage every available resource to stand out. Below, there is a review of some research papers that were used as reference materials.

- A. Chassiakos and S. Sakellaropoulos [Cha08] conclude that the construction industry is one of the most information-dependent ones due to its extensive fragmentation. Construction projects frequently demand the employment of several human resources with a variety of specializations, are complicated and distinctive, and entail a huge number of tasks. Therefore, even for small-scale projects, a tremendous amount of information is produced and shared during the construction process.
- P. Nitithamyong and M. Skibniewski [Nit04] discussed the latest developments in PM-ASPs for the construction sector, along with the recent PM-ASPs' supported features and business models. Systems that are currently on the market were showcased. After a discussion of the future trends for PM-ASPs and some of the academic research that has already been done on the subject, the possible advantages and disadvantages of implementing PM-ASPs were also covered.
- M. Alshawi and B. Ingirige [Als03] briefly discussed the history of project management, as well as the difficulties and issues that contemporary project management techniques face. The impact of the most recent technological developments on project management is also covered, along with the new paradigm of project administration over the internet. The paper includes a variety of case studies that highlight the benefits of using the Internet for project management, along with an analysis and future directions.
- B. Wilkins and J. Barrett [Wil00] studied the virtual building and construction environment. They show how the World Wide Web can be used to create a multimedia "virtual" environment for construction engineering and technology education. Based on multimedia content gathered from three building sites, the environment consists primarily of a series of site visits, virtual tours, and virtual design and production offices.

Yu Guo and Jie Liu [Guo14] presented a novel approach to building semantic websites, offering consumers a sophisticated, dynamic online surfing experience that incorporates a variety of methods, including retrieval, reasoning, and the domain ontology generation process. The test resulted in a positive outcome, demonstrating that the sample website could satisfy users' retrieval demand for hot tourism in Africa.

Li Yashuai, Zhang Xueqing [Li13] considers construction waste as one of the main sources of municipal solid trash. Massive volumes of waste put significant strain on the sustainable growth of many communities worldwide. To produce a built environment that is sustainable, the building sector needs to enhance its waste management practices. Accordingly, one of the most important aspects of efficient construction waste management is the precise assessment of different types of trash during the building process.

Chan Swee-Lean and Leung Nga-Na [Cha04] explained the conceptual paradigm of a metadatabased information system for Web-based document data interchange for construction project management. The system retrieves pertinent data from the original papers, reorganizes it for certain tasks or users, and displays it on a combined webpage. Through a Web-based survey conducted in Singapore, the study determines new user requirements in addition to identifying the entire functional requirements from the current Web-based collaboration systems.

Ziemba and colleagues [Zie15] aimed to provide a knowledge base regarding the techniques used to evaluate a website's quality. A range of quality assessment techniques are covered by the ontologybased repository, enabling appropriate selection. Major approaches were used to verify the suggested strategy, and the generated ontology may serve as a domain knowledge store.

Arslan and colleagues [Ars08] demonstrated that when subcontract jobs and building projects are more complicated, general contractors (GCs) should think about evaluating multiple factors at once to determine which is best. Selecting the appropriate SC for a given task has an impact on both the standard of work and the construction advancement. A precise and realistic bid proposal, especially throughout the bidding process, depends on the best possible selection of SCs.

Fu Xiaolin and colleagues [Fu10] presented in their work a knowledge map for the website with intelligent content. The design of the knowledge map system, which consists of six modules, was built in this study with the use of high cohesion and low coupling principles. The authors also made use of pruning algorithms and association rules to arrive at the system's central module. This map representation makes up for the fact that a single knowledge map does not have many interpretations. In conclusion, this research offers a workable method for knowledge extraction from online sources so that a knowledge map can be created. Knowledge maps can be quickly created using the suggested method.

A literature study on construction of websites is usually concluded with a summary of the major findings and patterns found in the different studies. It might draw attention to the fact that usability is a top priority for successful building websites, with user satisfaction mostly dependent on clear content and easy navigation. The body of research continuously highlights the significance of responsive design, emphasizing that mobile compatibility is now essential for drawing in visitors and improving user experience. Additionally, the assessment will emphasize how important professional design and visual appeal are in drawing in visitors and keeping them interested. Effective construction websites typically have consistent branding and excellent images. Since quick load times and dependable functionality have a direct impact on user satisfaction and retention, the conclusion may also discuss the crucial relevance of technical performance.

METHODOLOGY

What the meshing methodology will do is match perfectly state-of-the-art technology in the construction business strategic plan with new managerial initiatives in establishing a long-term and sustainable business. A clear view and mission on this will thus come up with a central base of values in quality, integrity, and customer satisfaction. The trouble for strategic planning is that more or less detailed market analysis has to be carried out to understand the trends, competitive dynamics, and new opportunities in the building sector. On such a strict base of analysis, the working business model will stand far from vulnerability.

The incorporation of the old ways and the traditional methods of construction mixed with the new innovative methods did provide scope for opening up ways that guarantee an evergreen principle and an attitude toward flexibility and adaptability to the kind of change in the market. Well, technology played a vital role in this mixing principle, and Building Information Modelling suits perfectly for its realization. BIM operates on the basis of an complete 3D digital model for a constructed project; therefore, it totality overhauls planning, design and implementation of projects. BIM provides great coordination among different stakeholders, thus reducing all the possible costly errors or defective designs; however, it is necessary to have complete knowledge of frontend to carry on this project.

In fact, most of the process, from laying bricks all the way to welding and even material handling, can be automated to such great extent that huge parts of labour costs and time-consuming activity can be reduced. This shall be followed by green-building-adapted technologies that are aimed at sustainability so that the required energy efficiency will be established without causing some form of environmental degradation.

We use HTML to make our websites, and some snippets of code are shown below (Fig. 1).

The project will include the use of green materials in energy sources, reduction of wastes, and recycling. Undoubtedly, the application of IoT devices would place intelligent construction technologies in a position to exercise real-time monitoring of site conditions, resource consumption, and equipment performance to optimize informed decision-making and operational effectiveness. On the fusion methodology, such management-related aspects will be handled in application.

Some snippets of CSS codes that are also used are shown below (Fig. 2).

```
| intel lang='m' |
| chist lang=
```

Fig. 1 Snippets of Code

```
X Ginal.html
                                     # Eng2.css
                                                        o page2.html
                                                                            page3.html
css2 > # final.css > 😫 .navbar
162
             .accordion li label {
                  display: flex;
163
164
                  align-items: center;
                  padding: 20px;
165
166
                  font-size: 1.3rem:
                  font-weight: 500;
background: □#222f3d;
167
                  color: | white;
169
170
                  margin-bottom: 2px;
171
172
                  cursor: pointer;
position: relative;
173
                  border-radius: 15px;
174
175
176
             .accordion p {
   line-height: 30px;
177
178
179
            label::after {
   content: '+';
180
181
                  font-size: 2rem;
182
183
                  position: absolute;
184
                  right: 20px;
185
                  transition: transform 0.5s;
186
187
             .accordion input[type="radio"] {
189
                  display: none;
190
191
             .accordion .content {
    background: ■#e0c2f2;
192
193
194
                  text-align: left;
                  padding: 0px 20px;
max-height: 0;
195
196
                  overflow: hidden;
```

Fig. 2 CSS codes

JavaScript language is also used to make live Chatbot to answer queries of users in an integrated environment were all stakeholders (architects, engineers, contractors, and clients) work perfectly together, cohesively, and smoothly from the very start to the finish of the project. The same can also be told of its justification for existence by the very well-developed communication tools that allow real-time updating and remote site monitoring, at the same time allowing real-time feedback loops.

The latter is also relevant to the disciplines that encompass the financial management procedures: cost control, financial planning and budgeting, and financial forecasting. In respect to other aspects, cost management can also be efficiently performed with the assistance of contemporary program solutions in providing complete traceability of the expenses and keeping the project inside preset budgets.

```
<!--Start of Tawk.to Script-->
<script type="text/javascript">

var Tawk_API = Tawk_API || {},

Tawk_Loadstart = new Date();

(function() {

var s1 = document.createElement("script"),

s0 = document.getElementsByTagName("script")[0];

s1.async = true;

s1.src = 'https://embed.tawk.to/669e9bfbbecc2fed692907c9/1i3dp2k87';

s1.charset = 'UTF-8';

s1.setAttribute('crossorigin', '*');

s0.parentNode.insertBefore(s1, s0);

})();

</script>
<!--End of Tawk.to Script-->
```

Fig. 3 JavaScript Codes

It includes such things as wearable devices that are monitoring the health and safety of a worker at the individual worker level in real time. This basically explains why the CRM systems are set in such a way that positive long-term relations with clients should be maintained, and repeat businesses and good referrals should be secured. Scoped on an aggregate basis, the incorporation of all these diverse elements into a coherent strategy for potential future growth of the construction companies in order to turn them efficient, innovative, and hence sustainable would accrue for them leadership capabilities in the marketplace. The meshing methodology proposed in this work was developed with a commitment to focusing on a cutting-edge technology meshed with imaginative managerial practices in developing business strategies that are sustainable and long-term based. All centered on the focus of a clear-cut mission in quality, integrity, and customer satisfaction, with a base in market analysis at the deepest levels.

It recommends a combination of traditional and innovative construction procedures, where Building Information Modeling will provide a significant enhancement in project planning, stage design, and implementation. Automation and Robotics are among the reasons that will bring efficiency and safety, whereas Green Building Technologies are encouraged in order to have sustainability and energy efficiency. It uses Internet of Things devices that help in real-time monitoring and decision-making, supported by Lean Constructions and Integrated Project Deliveries to realize maximum value with minimum waste. Advanced software solutions are integrated for financial management and human resource management, which will foster the attraction and retention of key skills. Safety is managed by wearable monitoring devices; the relationships with customers are managed by sophisticated CRM systems. By including these very diverse elements, the approach serves to position the construction companies in the new front of innovation, effectiveness, and sustainability. Generally, the approach nurtures leadership capability in a new, competitive market.

EXPERIMENTAL SETUP

Through a realistic website creation approach, this project's experimental setting focusses on integrating contemporary digital technology into the building process. The objective was to create an interactive and responsive web platform for a construction company that satisfies both client demands and contemporary industry standards.

The construction company's current online presence was examined first. The results demonstrated that the majority of businesses in this industry continue to rely on antiquated or static websites that

offer minimal interaction or engagement. As a result, our project used a technology-driven approach, utilising cutting-edge frontend design tools like HTML5, CSS3, and JavaScript. These technologies guarantee that the website loads quickly and has a high visual appeal on all platforms, including desktop, tablet, and mobile.

Three primary phases comprised the experimental procedure:

Frontend Design and Responsiveness: Creating a simple, contemporary layout that exudes professionalism and trust was the main goal. While CSS was used to improve the visual design with consistent colour schemes, typography, and flexible layouts, HTML served as the site's core. To ensure compatibility across numerous devices, the responsiveness was evaluated using a range of screen sizes.

User Engagement and Interactivity: To enhance interactivity, JavaScript was incorporated. To enable users to ask enquiries and get immediate automated answers, a live chatbot was implemented. This enhances user happiness and engagement while simulating real-time communication. Additional JavaScript functions were added to enable dynamic project image display, form validation, and interface transition animation.

Integration of Smart building Technology: The experimental model included data visualisation elements and Internet of Things-based monitoring concepts to conform to the idea of smart building. This configuration exemplifies how future construction websites might incorporate real-time datalike project status, resource tracking, or site conditions—into an easily navigable dashboard, although being used in a simulated setting.

To make sure the system was stable, responsive, and accessible, testing was done. Cross-browser capability was verified using a variety of browser contexts, including Chrome, Edge, and Firefox. To guarantee maximum search exposure and fast response times, the website was assessed using SEO and performance tools.

Speaking of efficiency and precision, besides some activities such as construction works running in the automation and robotics, this also enhances the safety of the works.

Our recent project website looks like this (Fig. 4).

Fig. 4 Application View

Green building-adapted technologies that strive for sustainability will come next, ensuring that the necessary energy efficiency is achieved without compromising the environment in any way. These will include recycling, waste reduction, and the use of green materials as energy sources.

Our website page offering the services looks like this (Fig. 5).

Fig. 5 Website View

Our Login/Signup page looks like this (Fig. 6).

Fig. 6 Login page

All things considered, this experimental configuration effectively illustrates how digital platforms may transform conventional construction management by integrating technology into each operational layer. By combining responsive design principles, interactive digital tools, and contemporary web development techniques, the project demonstrates how a construction company can move from traditional offline methods to a data-driven, technology-integrated, and user-centred digital ecosystem.

In addition to serving as a digital portfolio, the created website serves as a hub for interactive management and communication. Clients, engineers, and contractors are better able to interact in real time thanks to live chatbots, immediate contact forms, and constantly updated project sections. Improved client satisfaction and operational transparency result from this shift, which lessens reliance on human communication and speeds up reaction times.

Furthermore, by guaranteeing energy-efficient coding techniques, optimized load times, and mobile-first architecture—all of which help to lower digital energy consumption and enhance accessibility—the platform exemplifies the concepts of sustainable and smart design. The potential of real-time monitoring and visualization in project management is demonstrated through the use of simulated IoT modules and Building Information Modelling (BIM) ideas. All of these components work together to create a construction management model that is effective and prepared for the future by combining traditional craftsmanship with contemporary digital intelligence.

The end, this experimental approach establishes a standard for updating websites in the construction sector, demonstrating that digital innovation is now a basic requirement rather than an optional addition. It creates a scalable foundation that can be expanded with other smart technologies like augmented reality (AR) for project visualization, machine learning for cost optimization, and artificial intelligence (AI) for predictive maintenance. Because of this, the website is more than just a digital interface; it is a prototype for the next generation of smart construction systems, where sustainability, usability, and technology work together to completely change how the construction industry communicates with customers and runs its business.

RESULT

The significance of usability and successful design is usually emphasized in a study paper on a building website. Users should be able to get the information they need quickly on the website by navigating it with ease and reading clear, succinct text. Additionally, accessibility is essential for making sure that people with disabilities can easily navigate the website. High-quality photos, a dependable colour scheme, and a polished layout all contribute to the visual appeal of a design and increase user engagement. In such cases, the responsive design is crucial, especially for mobile users. Mobile-friendly websites typically have higher visitor retention rates and offer an improved user experience. Technical performance is also important since it affects user engagement and satisfaction. Examples of this include page load times and general functionality.

CONCLUSION

Therefore, this review of one Construction Company and the small project that followed represent an excellent way to grow and to move forward. We have found that technology and modern methodologies are powerful enough to change some age-old problems within that particular industry.

Digital tools (the most promising are project management software and Building Information Modeling) are seemingly aiding in the simplification of complex processes whilst enabling cooperation between a multitude of stakeholders. These tools streamline work and obliterate human faults and transgressions that have burdened construction from the time of dykes onwards. This is the major jump towards transparent construction ecosystem.

These results accentuate the inherent growth over sustainable construction practices. These practices go beyond sustainability rhetoric, and deliver tangible financial outcomes in terms of long-term asset valuation risks, providing building performance in compliance with new procurement standards and increasing regulatory demands. There is an emergence shift that green building materials, energy-efficient designs, and waste reduction strategies are turning good at ethical practice for an industry under increasing pressure to lessen its environmental footprint.

This reflects a growing trend in the industry toward more advanced safety types, like NEXT respirators and artificial intelligence-powered hazard detection systems. These and others newfound little things enhancing security of workers went quite a way towards nipping resultant workplace and

site accidents. Moreover, there are also things like safety training through virtual reality that make our worksites are safer and help us to use new technologies better.

However, the coolest part of all this may be how new and future technology will revolutionize construction as a profession. In this regard, predictive maintenance, and resource optimization along with risk assessment is one such area that can substantially benefit from the use of AI/ML. A future where live building sites can work seamlessly with each other, all through the IoT, and inform our judgement in real-time at every step of the journey. "Certain robotics and automation solutions could lead to a future in which there are no longer shortages of labor, but an increase of productivity; from 3D prints for the construction building parts as far each other can be, until completely autonomous vehicles to build structures" (Wong Günther).

However, this path to universal adoption of such innovation might not be a smooth road. The hard parts are corporate resistance to change, necessity for significant initial investment and heavy workforce training. On top of that, there is the entirely reasonable concern over digital security and data privacy in an industry plagued with investigations after revelations.

On the other hand, there are clear benefits of embracing these new technologies and philosophies. Each time they do this, the gulf widens between them and their competitors, who ultimately help drive an industry that is constantly on top of itself. The promise of driving better project results, at lower cost and high sustainability levels, is coming to life for Vinnova in a way that is like a music to the ears of those who are on record backing safety-aligned ideas.

This work offers an effective baseline for further study and application. Research could also be needed to explore some long-term influences of sustainable initiatives, AI in project decisions or a mature PM system. Combining construction with building or placing industrialization on the same scale as other technical developments, such as smart city development and modular constructions, can lead to more interesting findings.

In summary, the built space is on the cusp of a technological transformation! The mini project results here is a stark pointer to how much change can happen in construction at planning, design and even in maintenance. By rebuking old habits and adopting new practices, with innovation and implementation of emerging technologies in future projects and policies, construction can lift its suitcase full of past challenges to get on the plane toward a future marked by ethical responsibility, improved safety, and increased efficiency. Way to realization – it appears that in the foreseeable future, all those organizations and individuals who manage to survive in this S-curve transition will determine (by force or by design) new frontiers of how construction-showing-up shall take place.

FUTURE SCOPE

Therefore, this is the mini project on a construction company; it provides a good platform for further research opportunities that will open in near future. Revolutionizing Project Management and Execution by incorporating advanced technologies such as BIM, IoT, and artificial intelligence to drive efficiency/accuracy of the projects. At some point, it will also be imperative to research sustainable construction techniques and materials that we can use ecologically friendly with lower energy consumption and reduced wastes. In addition to the long-term economic and environmental costs, questions of ability to implement these technologies in the short run will also be addressed. These could likewise involve digital security-focused process innovations in addition to augmented reality training applications and real-time wearable protective devices that substantially increase worker wellness while also significantly decrease on-site mishaps.

Application of visual technologies (VR/AR) for project visualization provides more nuanced and engaging methods of information dissemination to clients. AI chatbots soon will make customer support extremely efficient. The use of e-learning platforms in areas like assessment tools, gamifying content learning, and AI enabled mentorship programs to bridge skill gaps helps on workforce retention.

The project can be evaluated in terms of analytics-based runtime and savings estimations. Use machine learning to predict costs and schedules of projects given different constraints (e.g., number

of developers, experience levels). This will show opportunities for cost savings across the life cycle of any project. It also can estimate how much robotics and automation will be used in construction processes.

Deep dive into areas of automated regulatory compliance and quality assurance systems, with an AI-led vision and computer-guided eyes new dimensions of quality in construction could be achieved which are less prone to human fallibility. Construction companies are an obvious area where the tests of time should apply, in order to improve efficiency and sustainability for better project delivery. These points really show potential directions that future research may go.

Acknowledgement: The study was supported by a grant from Chandigarh University. We would like to express our sincere gratitude to our supervisor, whose guidance and feedback were invaluable throughout the research. We also thank our institution and faculty advisor for their support and resources provided during the course of the study.

Ethical Statement: This study does not contain any studies with human or animal subjects performed by any of the authors.

Conflicts of Interest: The authors declare that they have no conflicts of interest to this work.

Data Availability Statement: Data available on request from the corresponding author upon reasonable request.

REFERENCES

- Alshawi M., Ingirige B. Web-enabled project management: An emerging paradigm in construction // Automation [Als03] in Construction. Vol. 12. No. 4. P. 349-364. DOI: 10.1016/S0926-5805(03)00003-7. EDN: BGOUTJ.
- Arslan G., Kivrak S., Birgonul M. T., Dikmen I. Improving sub-contractor selection process in construction projects: Web-[Ars08] based sub-contractor evaluation system (WEBSES) // Automation in Construction. 2008. Vol. 17. No. 4. P. 480-488. DOI: 10.1016/j.autcon.2007.08.004.
- [Ban11] Banias G., Achillas Ch., Vlachokostas Ch., Moussiopoulos N., Papaioannou I. A web-based decision support system for the optimal management of construction and demolition waste // Waste Management. 2011. Vol. 31. No. 12. P. 2497-2502. DOI: <u>10.1016/j.wasman.2011.07.018</u>.
- [ChaO4] Chan S.-L., Leung N.-N. Prototype web-based construction project management system // Journal of Construction Engineering and Management. 2004. Vol. 130. No. 6. P. 935–943.
- [Cha08] Chassiakos A. P., Sakellaropoulos S. P. A web-based system for managing construction information // Advances in Engineering Software. 2008. Vol. 39. No. 11. P. 865-876. DOI: 10.1016/j.advengsoft.2008.05.006.
- [Che09] Cheng M.-Yu., Tsai H.-Ch., Hsieh W.-Sh. Web-based conceptual cost estimates for construction projects using evolutionary fuzzy neural inference model // Automation in Construction. 2009. Vol. 18. No. 2. P. 164-172. DOI: 10.1016/j.autcon.2008.07.001.
- [Coc10] Cocquebert E., Trentesaux D., Tahon C. WISDOM: A website design method based on reusing design and software solutions // Information and Software Technology. 2010. Vo. 52. No. 12. P. 1272–1285. DOI: 10.1016/j.infsof.2010.07.002.
- [Fu10] Fu X., Liu G., Dang Y. Research on knowledge map construction in intelligentized content website. In: 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering. Vol. 1. IEEE, 2010. P. 406-409.
- [Guo14] Guo Yu, Liu Jie. Model Design of Semantic Website Construction // Journal of Software. 2014. Vol. 9. No. 8. P. 2142–2147.
- [Had10] Hadaya P., Pellerin R. Determinants of construction companies' use of web-based interorganizational information systems // Supply Chain Management: An International Journal. 2010. Vol. 15. No. 5. P. 371–384.
- [Li13] Li Y., Zhang X. Web-based construction waste estimation system for building construction projects // Automation in Construction. 2013. Vol. 35. P. 142-156. DOI: 10.1016/j.autcon.2013.05.002.
- [Nit04] Nitithamyong P., Skibniewski M. J. Web-based construction project management systems: How to make them successful? // Automation in Construction. 2004. Vol. 13. No. 4. P. 491–506. DOI: 10.1016/j.autcon.2004.02.003.
- [Wil00] Wilkins B., Barrett J. The virtual construction site: A web-based teaching/learning environment in construction technology // Automation in Construction. 2000. Vol. 10. No. 1. P. 169–179. DOI: 10.1016/S0926-5805(00)00075-3. EDN: AJBRUH.
- [Yao17] Yao Ya., Zhang J., Shen F., Hua X, Xu J., Tang Z. Exploiting web images for dataset construction: A domain robust approach // IEEE Transactions on Multimedia. 2017. Vol. 19. No. 8. P. 1771–1784.
- [Zie15] Ziemba, Paweł, Jarosław Wątróbski, Jarosław Jankowski, and Waldemar Wolski. "Construction and restructuring of the knowledge repository of website evaluation methods." In Information Technology for Management: Federated Conference on Computer Science and Information Systems, ISM 2015 and AITM 2015, Lodz, Poland, September 2015, Revised Selected Papers, pp. 29-52. Springer International Publishing, 2016. DOI: 10.1007/978-3-319-30528-8 3.

METADATA | МЕТАДАННЫЕ

The article was received by the editors on January 27, 2025 Поступила в редакцию 27 января 2025 г.

Название: Умное строительство: интеграция технологий в современную строительную практику.

Аннотация: Строительным компаниям необходимо заметное присутствие в интернете для укрепления своей репутации, привлечения клиентов и стимулирования развития бизнеса в современном цифровом мире. В данной статье описывается проектирование и разработка веб-сайта строительной компании, который должен быть динамичным и простым в использовании, повышать видимость компании и обеспечивать удобное взаимодействие с клиентами. Для обеспечения бесперебойной работы на всех платформах, включая ПК, планшеты и смартфоны, веб-сайт создан с использованием современных адаптивных веб-технологий. Ключевыми элементами для улучшения пользовательского опыта и стимулирования запросов клиентов являются подробные описания услуг, галереи проектов, отзывы клиентов и простой доступ к контактной информации. Платформа обеспечивает хорошие результаты в поисковых системах и рост трафика благодаря внедрению передовых методов SEO и интеграции с социальными сетями. Веб-сайт служит мощным инструментом для привлечения потенциальных клиентов и стимулирования расширения бизнеса за счет оптимизации каналов коммуникации и демонстрации работ организации. Конечная цель — закрепить за компанией статус надежного лидера в конкурентной строительной отрасли, укрепить доверие клиентов и способствовать долгосрочному развитию за счет улучшения видимости в интернете.

Ключевые слова: SEO; веб-сайт; CSS; JavaScript.

Язык статьи: Английский.

About the authors | Об авторах

Arshdeep

Chandigarh University, India.

Assistant Professor and Competition & Placement Coordinator. With 9.5 years of experience, he specializes in full-stack development.

E-mail: Arshdeep.e13021@cumail.in

Konika Rani

Chandigarh University, India.

Assistant Professor and ERP Coordinator at the Institute of Computing. She specializes in Android development and has a strong focus on Machine Learning.

E-mail: konika.e13199@cumail.in

Harsh Kumar

Chandigarh University, India.

Pursuing a Bachelor of Technology (B.Tech) in Computer Science and Engineering. This is his first research publication, focusing on full stack developer.

E-mail: hk1295217@gmail.com

Аршдип

Университет Чандигарха, Индия.

Доцент и координатор по конкурсу и размещению. Имеет 9,5 лет опыта и специализируется на полно шикловой разработке.

E-mail: Arshdeep.e13021@cumail.in

Коника Рани

Университет Чандигарха, Индия.

Доцент и координатор ERP в Институте вычислительной техники. Она специализируется на разработке Android и уделяет большое внимание машинному обучению.

E-mail: konika.e13199@cumail.in

Харш Кумар

Университет Чандигарха, Индия.

Получает степень бакалавра технологий (B.Tech) комп. наук и инженерии. Это его первая исследовательская публикация, посвященная разработке полного стека.

E-mail: hk1295217@gmail.com