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PHILOSOPHY OF Al DESIGN:
HUMAN-IN-THE-LOOP AND BOUNDED RATIONALITY

0. |. ELKHOVA

The article explores the philosophical foundations and limitations of artificial intelligence (Al) rationality in the context
of decision-making. The author analyzes the distinction between epistemic and practical rationality, emphasizing the latter
as the basis for the operation of rational agents. Central to the discussion is the concept of bounded rationality, according
to which decisions are made under conditions of incomplete information, cognitive limitations, and restricted
computational resources. It is argued that ideal rationality is unattainable, and that bounded rationality represents
the most adequate model for Al. Four types of rationality are considered: ideal, computational, bounded, and bounded
optimality, with the conclusion that bounded rationality is the most practical applicable in the development of intelligent
systems. The author concludes that a bounded approach is essential for the practical design of such systems. It is noted
that these limitations must be taken into account when creating adaptive algorithms and that human involvement
in the decision-making process is crucial for enhancing the reliability of outcomes. The human-in-the-loop model is
interpreted not merely as a technical mode of interaction, but as an expression of situational rationality, which entails
attention to context, moral consequences, and the uniqueness of each specific case. Human presence lends algorithmic
reasoning to a value-laden and interpretive dimension, reestablishing the link between rationality and practical wisdom
(phronesis). In situations where algorithms are constrained by resources and prone to errors, it is the human who can
identify contextual nuances and meaningfully adjust decisions. Thus, integrating the human into the loop becomes a key
factor in ensuring the reliability of decisions made by artificial intelligence.
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INTRODUCTION

The concept of rationality in philosophy traces back to Aristotle, who distinguished between two
types: epistemic and practical. The former is concerned with the justification of beliefs, while
the latter pertains to actions and decision-making. This distinction reflects the difference between
the process of reasoning and actual behavior. In the epistemic sense, rationality implies the possession
of well-argued and reliably formed beliefs. However, even seemingly contradictory judgments may
retain a rational character if they are justified within the framework of accepted methods of cognition.
Aristotle emphasizes that the process of reasoning and behavior itself are distinct phenomena. Today,
greater attention is paid to rational behavior, as it is tied to practical outcomes. The concept of
the «rational agent» is used to describe a subject who makes decisions aimed at achieving the optimal
result, even under conditions of uncertainty. Practical rationality differs significantly from epistemic
rationality, which is focused on the alignment of reasoning with logical principles. Unlike
the epistemic form, practical rationality encompasses not only logical aspects but also motivation,
desires, real-world constraints, and is aimed at decision-making and choosing the best course of action
under specific conditions. This function forms the foundation of artificial intelligence systems, which
must analyze data, predict potential outcomes, and determine the most effective decisions. This
process largely mirrors human practical reasoning, which is oriented toward goal achievement rather
than the mere justification of beliefs. The notion of a ‘rational agent’ has become central
to the discourse on artificial intelligence [baG17, pp. 11-16]. In the context of Al a rational agent is
understood as a system capable of analyzing data, forecasting the consequences of actions, and
selecting optimal decisions based on given parameters in uncertain environments. The aim of this
study is to identify the philosophical foundations and limits of artificial intelligence’s rationality,
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as a detailed analysis of its limitations in information processing and decision-making is becoming
increasingly relevant today. The active integration of intelligent systems into critical areas of human
activity calls for a reassessment of the boundaries of their rationality and the factors influencing
the accuracy and justification of the decisions they make.

LIMITS OF HUMAN AND MACHINE RATIONALITY

Although artificial intelligence was originally designed to model human intelligence, it must be
acknowledged that human decision-making is not always rational or optimal and is often biased.
In this regard, it is worth recalling H. Simon’s concept of bounded rationality, which explains
decision-making through the lens of individuals’ cognitive limitations and the incompleteness of
available information. These ideas stand in stark contrast to traditional views that consider humans
as fully rational agents capable of always choosing the best option based on objective analysis.
Classical rationality theory, often ignoring its hidden assumptions, presumes that individuals possess
exhaustive knowledge of all possible alternatives and their outcomes. In contrast, H. Simon
emphasizes that under real-world conditions, people rarely strive for absolute optimality. Instead,
they follow the principle of satisficing, preferring solutions that seem good enough, even if they are
not the best. In this context, rationality plays a key role in explaining decision-making mechanisms.
Simon metaphorically compared human cognitive limitations to one blade of a pair of scissors and
the structure of the environment to the other: the mind «cuts» effectively only through the interaction
between its limited capabilities and environmental cues [Sim57, pp. 198—199]. The theory of bounded
rationality challenges the notion that people can make decisions purely based on objective data, free
from emotion or cognitive bias. It highlights that rationality is defined not only by the final result but
also by the decision-making process itself. In reality, decision-making involves analyzing available
information, considering time constraints, and evaluating the relevance of potential alternatives.
Cognitive barriers, knowledge gaps, and environmental influences all hinder the achievement of ideal
outcomes. The relevance of these ideas is reinforced by studies focusing on the challenges
of the digital age, which show that the development of modern information and communication
technologies, including Al, introduces fundamentally new challenges. These developments call into
question established notions of rationality and demand their fundamental rethinking [Enx24,
pp- 27-30].

The issue of artificial intelligence’s rationality is inseparably linked to the specifics of information
processing. The connection acquires additional conceptual depth through philosophical inquiry into
the dynamics of digital experience, with particular emphasis on the virtuality index proposed
by O. . Elkhova [Elk22]. This index conceptualizes immersion, involvement, and interactivity
as integral dimensions for evaluating the subjective impact of virtual environments, thereby
establishing a methodological basis for analyzing the modulation of bounded rationality and cognitive
adaptation within human-machine interaction. The resulting theoretical developments make it
possible to refine the philosophical framework of artificial intelligence by correlating bounded
rationality with the ontological parameters of digitally mediated perception. These aspects are evident
not only in the cognitive limitations of algorithms but also in the dynamics of human interaction with
digital environments, including virtual reality. In such environments, the structural metrics of
phenomenological experience influence the subjective mechanisms of decision-making. Analyses of
the phenomenology of virtual experience reveal that perception within digital space relies on
principles similar to those of bounded rationality. When interacting with virtual environments,
humans synthesize sensory data from both physical and digital worlds, contributing to the formation
of adaptive cognitive strategies. The concept of field interference between the real and the virtual in
studies of phenomenological experience demonstrates that rationality in digital space cannot be
reduced to a mere optimization algorithm [Enx24b, pp. 1003—1005]. On the contrary, rationality
emerges from the interaction of multiple interrelated factors — cognitive, sensory, and social —
requiring a complex, integrative approach.
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When the number of possible alternatives is too large for comprehensive analysis, individuals
often resort to simplified heuristics, which inevitably leads to deviations from optimal choices.
Furthermore, subjective factors such as personal values, goals, and preferences significantly influence
decision-making processes, sometimes distorting the objective evaluation of available options. Errors
in judgment may arise because individuals lack unlimited cognitive resources and may be unaware
of better alternatives or, conversely, mistakenly consider inferior options as preferable. In uncertain
conditions, people tend to settle for what seems most suitable from their perspective, rather than
maximizing the result. As a result, decisions do not always align with an objective maximum.
H. Simon’s concept has profoundly influenced Al development, revealing that machines also face
the same fundamental constraints as humans. The theory of bounded rationality remains relevant
in contemporary Al research, especially in the design of intelligent systems. Two main approaches
to modeling rationality in Al can be identified. The first, bottom-up approach relies on human data
and inputs, which may introduce bias. These distortions arise because the data used to train models
often contain false assumptions and limited views, reflecting human prejudices. The second, top-
down, is based on logic and formal rationality, but human biases may be embedded in the rules
themselves. For example, in machine translation systems, specific linguistic patterns may distort
results. Contemporary research actively explores hybrid approaches that combine the strengths
of both models — data and logic — to minimize bias and improve decision-making rationality.

In discussions about Al capabilities, four types of rationality are often identified: ideal,
computational, bounded rationality, and bounded optimality [Rus22, pp. 36-38, 58-59]. Ideal
rationality implies decision-making based on complete knowledge of all alternatives and their
consequences. However, in real conditions, such rationality remains unattainable due to incomplete
information and the complexity of the tasks involved. Moreover, some problems require
consideration of a vast number of variables, rendering them computationally infeasible even for
the most powerful modern systems. In this light, the concept of computational rationality becomes
more applicable. It takes into account available resources and seeks acceptable solutions within
computational constraints.

Nevertheless, challenges remain: the more complex a problem is, the more resources are required
to solve it, making it impossible to analyze all alternatives within a reasonable time frame. For
instance, in tasks related to pattern recognition or prediction, the system is forced to use heuristics
and approximation methods rather than conducting a full analysis of all possible options. Many tasks
faced by Al belong to the class of computationally hard problems, which means that the number
of possible solutions grows exponentially or becomes unsolvable in polynomial time.
The combination of limited computational resources and the complexity of real-world decision-
making make achieving optimal outcomes practically impossible.

One manifestation of this issue is the combinatorial explosion — a rapid increase in the number
of potential options that renders exhaustive search infeasible even for the most powerful systems.
This is especially evident in Al systems tasked with optimization and planning, where exponential
growth in possible combinations necessitates the use of heuristic methods and approximate
algorithms. As a result, Al must limit its reasoning within a particular frame, which inevitably
simplifies its worldview but prevents paralysis caused by data overload.

BOUNDED OPTIMALITY AND THE LIMITS OF COMPUTABILITY

The concept of bounded optimality, formulated by St. Russell, posits that the optimal agent is not
one acting under abstract conditions but one that achieves the best possible result within given
resource constraints. According to St. Russell, «bounded optimality extends the traditional notion
of rationality by explicitly incorporating the limitations of computational resources in real agents»
[Rusl6, p. 13]. These ideas have served as the basis for a number of studies on rational meta-
reasoning, where intelligent agents allocate resources not only to solving tasks but also to evaluating
the effectiveness of continued search (e.g., determining when it is reasonable to stop searching and
proceed with implementation). Thus, a line of research stemming from H. Simon’s work views
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the intelligent agent as acting rationally within the bounds of its capabilities rather than in an absolute
sense. Today, virtually all successful Al systems in one form or another implement the principles
of bounded rationality, eliminating unpromising options due to resource limitations.

However, the limitations of Al are defined not only by technical factors but also by fundamental
mathematical principles. As early as A. Turing’s work, the existence of undecidable problems was
established, most notably the halting problem, which no universal computing machine can solve
[Tur50; Tur36]. This insight is of fundamental importance: every formal system of intelligence has
boundaries, determined not only by available resources but also by the very laws of computability.
Therefore, the limits of Al are not merely a matter of insufficient computational power but an inherent
property of any algorithmic system. Another critical limitation is posed by K. Godel’s incompleteness
theorems, which show that in any sufficiently powerful formal system, there are statements that can
neither be proven nor disproven. Similar problems may arise in Al systems as well [Tou22, pp. 265—
266, 276]. This means that certain classes of problems will remain fundamentally unsolvable for
machine algorithms, regardless of their complexity or computational capacity.

Bounded optimality can be seen as a compromise between precision and cost: it does not require
exhaustive analysis of all possible solutions but guarantees an acceptable result within a reasonable
timeframe. This approach is especially relevant for real-world computing systems that must operate
under time, memory, and computational constraints. Yet even this level of rationality is not always
achievable, as algorithms may encounter resource barriers, and the computational complexity
of certain problems makes finding a satisfactory solution impossible. Modern intelligent systems are
designed with bounded rationality in mind: it is acknowledged that ideally rational algorithms are
often infeasible, so algorithms must be effective within available resources. For example, planning
and decision-making systems use heuristics, irrelevant-branch pruning, and anytime algorithms,
which can halt computation upon finding an acceptable solution.

Since ideal rationality remains unattainable, computational rationality is resource-bound, and
even bounded optimality is not always feasible, the most realistic and practically applicable model
becomes bounded rationality. This model allows Al to be adapted to real-world conditions and
existing constraints. Within this framework, an agent makes decisions not by searching for
the globally optimal solution, but within the bounds of available options and limitations. In other
words, the system seeks a satisficing solution rather than an absolute optimum. This approach is
widely used in Al algorithms, especially in multi-criteria decision-making, where balancing solution
quality with computational cost is critical.

The concept of bounded rationality also plays a key role in interdisciplinary studies, particularly
in examining the interaction between humans and artificial intelligence. The integration of Al raises
numerous ethical challenges, particularly regarding the distribution of responsibility for Al errors.
Under such conditions, it is necessary to determine where responsibility lies — with developers,
operators, or the system itself. A crucial task becomes finding an optimal balance between algorithmic
autonomy and human oversight, enabling minimal intervention while preventing potential risks.
Scholars such as L. Floridi emphasize the importance of hybrid intelligence, which combines machine
algorithms with human interpretation and correction [All11, pp. 163-165].

A central aspect of this issue is the role of the hAuman-in-the-loop, i.e., human involvement
in making critical decisions to minimize risks. Since artificial intelligence lacks conscious perception,
it should not be regarded as an autonomous agent but rather as a tool whose effectiveness depends
on its interaction with humans. Three main models of such interaction are distinguished. The first
model, known as human-on-the-loop, implies that a human supervises the decisions made by artificial
intelligence and can intervene if necessary. The second, human-in-the-loop involves the active
participation of a human in the decision-making process, including the monitoring and adjustment of
algorithmic outcomes. The third model, human-out-of-the-loop, describes a scenario in which
the system operates fully autonomously without human involvement, which increases risks,
especially in critically important domains.



O. I. Elkhova — Philosophy of Al design: ‘Human-in-the-loop’ and bounded rationality 97

A broader ontological perspective on the identified limitations is presented in the work
by A. F. Kudryashev and O. . Elkhova titled “The Two-Faced Janus of the Evolutionary Essence
of Artificial Intelligence” [Kud23]. In this article, artificial intelligence is examined not solely
as a technological construct but as a component integrated into the process of global evolutionism.
The authors argue that the nature of artificial intelligence is characterized by dual orientation:
it remains grounded in the human past while simultaneously directed toward a potential post-human
future. Within this conceptual framework, the rationality of artificial intelligence should be analyzed
in light of evolutionary dialectics. This approach affirms that the limitations of artificial intelligence
are shaped not only by formal and computational constraints but also by historical, philosophical,
and ontological dimensions of its development.

HUMAN-IN-THE-LOOP: PHILOSOPHY, ETHICS, AND INTERACTION

As artificial intelligence continues to evolve, it is essential not only to improve algorithms but
also to emphasize philosophically informed design. It must be remembered that removing humans
from the decision-making loop does not eliminate responsibility — it merely obscures it and makes
oversight more difficult. In situations where outcomes have clear moral significance — such as
the allocation of medical resources, legal judgments of guilt, or the behavior of autonomous vehicles
in accident scenarios — responsibility must remain with the human. This approach is grounded
in the fundamental differences between computational processes and human experience, which
includes empathy, conscience, and accumulated life knowledge. Several examples illustrate this
point. Al is widely used in medical diagnostics, yet its conclusions must be verified by a physician.
For instance, Google Health’s algorithms demonstrated 94% accuracy in detecting breast cancer
in 2021, but they failed to recognize rare tumor types that human specialists identified more
accurately [For25]. This underscores the necessity of a hybrid approach, in which medical
professionals evaluate Al outputs before making final decisions. Similar issues are found in the field
of autonomous vehicles. In 2018, an Uber vehicle failed to recognize a pedestrian with a bicycle
at night, leading to a fatal accident [Ubel8]. Today, companies such as Tesla implement a human-
on-the-loop model, requiring driver supervision even when autopilot is engaged.

Contemporary research highlights the need to view Al not as a fully autonomous system, but
as atool that functions in close collaboration with humans. Thanks to collective efforts from
researchers and practitioners working to enhance the effectiveness of human-Al collaboration,
the Human-AI Teams approach has been developed. Its goal is to optimize human-technology
interaction, minimize the risks of automated decisions, and improve outcomes across various
domains. The combination of machine analytics and human experience opens new horizons
in medicine, transportation, economics, and other critical sectors. In the coming years, advances
in adaptive Al are expected to produce systems capable not only of completing tasks but also
of gradually learning to interact with humans by recognizing their preferences and work styles. For
this reason, the concept of bounded rationality and the human-in-the-loop model have become
essential components of Al development, ensuring a balance between efficiency and ethical
accountability. Such participation cannot be fully realized without appealing to the concept
of situational rationality, which posits that decision-making cannot be entirely algorithmized,
as every situation contains elements of uniqueness and openness. Unlike autonomous machines,
a human is not merely a supervisor or intervener but brings a value-oriented and interpretive
dimension to the decision-making process. This means that rationality in the human-in-the-loop
model is not limited to instrumental reasoning — it is grounded in the agent’s ability to consider
context, uncertainty, moral consequences, and the singularity of each situation.

The human-in-the-loop not only evaluates the algorithm's performance but also detects contextual
subtleties inaccessible to a machine operating solely on statistical patterns. Human presence restores
the link between rationality and practical wisdom (phronesis) — the understanding of concrete life
situations into which each decision is embedded. Thus, the human-in-the-loop model enhances
the safety and adaptability of systems while preserving the human dimension of decisions
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in the context of digital rationality. Human involvement in the loop represents a philosophically
grounded imperative that emphasizes the integration of rational choice with the existential, ethical,
and sociocultural foundations of human action. This, in turn, points to the need to align the logic
of algorithmic procedures with the ‘logic of life’ — a convergence of formal rationality with what
philosophy calls second-order rationality, involving the capacity for self-reflection and
the justification not only of outcomes but also of the assumptions behind the choices themselves.

The ethical and epistemological implications of this shared structure can be further explored
through the lens of evolutionary models that account for law-governed trajectories in Al development.
One such model is presented in “Predicting the Development of Artificial Intelligence: Nomogenetic
Perspective” [Elk23]. Drawing on theory of nomogenesis, the authors propose that artificial
intelligence may evolve along stable internal lines, which in turn opens the possibility of assigning
predictive and foresight functions to Al systems themselves. This framework contributes to
the philosophical and ethical discourse on human-in-the-loop configurations by highlighting the long-
term implications of delegating elements of future-oriented reasoning to artificial agents.

CONCLUSION

The conducted study offers a comprehensive philosophical foundation for the development and
application of intelligent systems, emphasizing the necessity of considering both technical and
humanistic dimensions of rationality.

1. It is demonstrated that ideal (all-encompassing) rationality is unattainable for both humans and
machines, given the real-world conditions that involve limited information, cognitive constraints, and
finite computational resources. The study confirms that bounded rationality, as proposed
by H. Simon, provides an adequate framework for describing the behavior of intelligent systems and
for designing Al capable of operating under uncertainty.

2. Rationality cannot be reduced solely to logical operations: in practical contexts, it is essential
to consider situational factors, moral consequences, and the uniqueness of each decision-making
scenario. The human-in-the-loop model imparts interpretative and ethical dimensions to algorithmic
reasoning. Human involvement enables the recognition of contextual nuances inaccessible
to algorithms, thereby enhancing the reliability and validity of decisions.

3. The limitations of artificial intelligence are not temporary obstacles but fundamental boundaries
arising from both resource constraints and mathematically proven limits inherent to any formal
computational system. Within these constraints, the concept of bounded optimality emerges
as a pragmatic strategy: the goal of intelligent agents becomes achieving the best possible outcome
within available limits, rather than striving for an unattainable ideal optimum.

4. The future of Al development lies in the creation of hybrid models, in which algorithmic data
processing is complemented by human interpretation. This interaction not only enhances
the adaptability and efficiency of systems but also integrates sociocultural, ethical, and contextual
dimensions into the decision-making process.
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NIEeKTa B KOHTEKCTE NPUHATUA peLleHnit. ABTOp aHanM3npyeT pas-
Muve MexKAay 3MUCTEMUYECKOM U MPAKTUYECKON paLmMoHaNbHO-
CTblO, aKLLEHTUPYA BHUMaHWe Ha nocaeAHel Kak ocHose paboTbl
paLMOHabHbIX areHToB. LleHTpanbHoe MecTo 3aHMMaeT KoHLen-
LiMA OrPaHNYEHHOMN PaLMOHAIbHOCTU, COFIACHO KOTOPOU NPUHSA-
Te peLleHUit OCyLLecTBAAETCA B YCI0BUAX HENOAHON nHbopma-
LMK, KOTHUTUBHbIX OTPAHUYEHUI U OTPAHUYEHHBIX BbIYUCAUTENb-
HbIX pecypcoB. OBOCHOBAHO, YTO MAea/lbHasA PaLMOHabHOCTb
HeJOCTUXMMA, a Hanbonee aflekBaTHOW mogenbto ana UN asns-
eTCcA OrpaHuWYeHHas PaLMOHANbHOCTb. PaccmoTpeHbl YeTbipe
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Title: Philosophy of Al design: Human-in-the-loop and bounded
rationality.

Abstract: The article explores the philosophical foundations and
limitations of artificial intelligence (Al) rationality in the context
of decision-making. The author analyzes the distinction between
epistemic and practical rationality, emphasizing the latter as the
basis for the operation of rational agents. Central to the discus-
sion is the concept of bounded rationality, according to which de-
cisions are made under conditions of incomplete information,
cognitive limitations, and restricted computational resources. It
is argued that ideal rationality is unattainable, and that bounded
rationality represents the most adequate model for Al. Four
types of rationality are considered: ideal, computational,
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TMNa PaUMOHANbHOCTU: MAEeaNbHaA, BbIYUCAUTENIbHAA, OTPaHU-
YeHHas U OrpaHWYeHHas ONTMMAIbHOCTb, C BbIBOAOM O NPaKTK-
YeCKON NMPUMEHUMOCTM MMEHHO OrpaHWYeHHOW PaLMOHaNbHO-
CTU B pa3paboTKe MHTEeNNEKTYanbHbIX cuctem. CaenaH BbIBOS O
NPaKTUYECKOM MPUMEHUMOCTU OrpaHUYEeHHOro noaxoda npu
pa3paboTKke MHTENNEKTyaNbHbIX cMCTemM. ABTOpP OTMeYaeT, YTo
HeobXx0AMMO y4nTbIBATb YKa3aHHbIe OrpaHUYeHUA NPU CO3AaHNN
aflanTUBHbIX a/ITOPUTMOB, @ TaKXKe 3HAYMMOCTb Y4acTuA Yeno-
BEKa B npoLecce NPUHATUA PeLleHni A4 NOBbILEHNA HaJEKHO-
CTU pe3ynbTatos. Mogenb «4enoBeka B KOHType» TPaKTyeTca He
NPOCTO Kak TexHuyeckasa popma B3aMMoLencTsmnsa, a Kak Bblpa-
YKEHWe CUTYaLMOHHOM pPaLMOHaNbHOCTH, Npeanonaratowei yuét
KOHTEKCTa, MOpPasibHbIX NOCNEACTBUIN M YHUKANBHOCTU KaxaoM
KOHKpeTHOM cutyauuu. MpucyTctBue YenoBeKka MNpUAaET anro-
PUTMUYECKOMY MbILLIEHUIO LLEHHOCTHBIN U MHTEPNpPeTaTUBHbIN
XapaKTep, BOCCTAHAB/MBAA CBA3b MEXAY PaLMOHANbHOCTBLIO U
npakTUYeckon myapoctbio (phronesis). B ycnosusax, korga anro-
PUTMbI OFPaHMYEeHbl pecypcaMmu W MNOABEPNKEHbI OWwMbKam,
MMEHHO YenoBeK CnocobeH BbIABAATb KOHTEKCTyaslbHble Hio-
aHCbl M OCYLLLECTBNATb OCMbIC/IEHHYHO KOPPEKTUPOBKY peLLeHUA.
Takum o6pasom, BKIOYEHME YENOBEKA B KOHTYP ABNAETCA BaXK-
Helwwnm dakTopom, obecneunBaloWMm NOBbILEHNE HALEKHO-
CTW peLleHni, NPUHUMAEMbIX UCKYCCTBEHHbIM MHTENNEKTOM.
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bounded, and bounded optimality, with the conclusion that
bounded rationality is the most practical applicable in the devel-
opment of intelligent systems. The author concludes that a
bounded approach is essential for the practical design of such
systems. It is noted that these limitations must be taken into ac-
count when creating adaptive algorithms and that human in-
volvement in the decision-making process is crucial for enhanc-
ing the reliability of outcomes. The human-in-the-loop model is
interpreted not merely as a technical mode of interaction, but as
an expression of situational rationality, which entails attention
to context, moral consequences, and the uniqueness of each
specific case. Human presence lends algorithmic reasoning to a
value-laden and interpretive dimension, reestablishing the link
between rationality and practical wisdom (phronesis). In situa-
tions where algorithms are constrained by resources and prone
to errors, it is the human who can identify contextual nuances
and meaningfully adjust decisions. Thus, integrating the human
into the loop becomes a key factor in ensuring the reliability
of decisions made by artificial intelligence.
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