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Сравнение моделей нейронных сетей  

для автоматического управления полетом квадрокоптера  

по заданной траектории 
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Пропорционально-интегрально-дифференциальные (ПИД) регуляторы широко применяются в промышленности и ис-
следовательских задачах благодаря простоте и эффективности. Однако при наличии параметрических неопределенно-
стей и внешних возмущений, особенно в динамически сложных системах вроде квадрокоптеров, остаётся актуальной 
задача обеспечения их робастности. В работе сравнивается самонастраивающаяся ПИД-схема, использующая подкреп-
ляющее обучение и гибридную нейросетевую архитектуру «актор–критик» для управления ориентацией и высотой по-
лёта квадрокоптера без априорной математической модели, с подобной архитектурой, использующей метод Proximal 
Policy Optimization (PPO) для оптимизации работы. В обоих случаях коэффициенты усиления регулятора состоят из ста-
тической и адаптивной динамической части, при этом обучаются только переменные компоненты. Нейросеть включает 
два скрытых слоя с сигмоидальными активациями. Обучение проводилось онлайн с оптимизатором ADAM и обратным 
распространением ошибки, что обеспечивает быструю адаптацию ко внешним возмущениям и изменению массы ап-
парата. Эксперименты показали высокую устойчивость систем к вариациям массы и порывам ветра при использовании 
траекторий различной сложности. Сравнение двух методов показало, что значительной разницы в отклонениях от иде-
альной траектории у них нет, однако метод PPO обучался в 2.8 раза быстрее, чем стандартный «актор–критик». Кроме 
того, метод PPO показал большее отклонение от идеальной высоты при изменении массы дрона в полёте. Результаты 
подтверждают потенциал гибридных нейросетевых структур для адаптивного управления в условиях неопределённо-
сти и рекомендуют разработанный алгоритм к практическому применению в автономных БПЛА, при этом архитектура, 
использующая стандартную модель «актор–критик», предпочтительнее при изменениях массы квадрокоптера в по-
лёте, а архитектура, использующая PPO – при сложных, длинных маршрутах 
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ВВЕДЕНИЕ  

Актуальность исследования обусловлена стремительным ростом применения беспилотных 

летательных аппаратов (БПЛА) в различных сферах человеческой деятельности. Квадрокоп-

теры находят применение в мониторинге промышленных объектов [Sha20, Гур24], доставке 

грузов [Fan19], поисково-спасательных операциях [Wah10] и сельском хозяйстве [Gup25, 

Саи25]. Однако эффективное выполнение этих задач требует высокоточной стабилизации 

и точного следования сложным траекториям в условиях внешних возмущений и параметриче-

ских неопределенностей.  

Проблематика управления квадрокоптерами связана со свойственной им нелинейной  

динамикой, сильной взаимосвязью каналов управления и чувствительностью ко внешним воз-

действиям, таким как порывы ветра [Ban16]. Традиционные ПИД-регуляторы, несмотря 
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на свою простоту и широкое распространение [Åst22], демонстрируют ограниченную эффек-

тивность в условиях изменяющихся динамических характеристик и внешних возмущений 

[Lop23].  

Обзор современных подходов показывает разнообразие методов решения задачи управле-

ния мобильными роботами различных типов [Гур24, Мус24], в число которых входят 

и квадрокоптеры. Li и др. [LiY24] предложили комбинацию управления с прогнозирующей 

моделью (Model Predictive Control – MPC) с нейронными сетями для трекинга траекторий,  

однако их подход требует знания точной математической модели. В работе [Ngu21] исследу-

ется адаптивное управление на основе нейросетей, но с обучением «оффлайн» (off-line), что 

ограничивает применимость в реальных условиях. Методы глубокого обучения с подкрепле-

нием [Sut18] демонстрируют перспективность, но часто требуют значительных вычислитель-

ных ресурсов.  

В данной работе сравнивается подход, предложенный в [Ima22], с аналогичным подходом, 

но использующим модель Proximal Policy Optimization (PPO) [Sch17] в различных условиях. 

В качестве первого подхода используется метод «актор–критик» (Actor-Critic – A2C), который 

зарекомендовал себя как эффективный подход для задач управления с непрерывным простран-

ством действий [Gro12]. В контексте управления квадрокоптерами данный метод позволяет 

сочетать превосходство градиента с функцией ценности состояния [Tan18]. Однако существу-

ющие реализации часто страдают от медленной сходимости и чувствительности к гиперпара-

метрам [Hen22]. В качестве второго метода используется Proximal Policy Optimization (PPO), 

который также доказал свою эффективность при работе с квадрокоптерами [Zha24]. 

Оптимизатор ADAM [Kin15] стал де-факто стандартом для обучения глубоких нейросетей 

благодаря адаптивной настройке скорости обучения и устойчивости к шуму в градиентах. 

В сочетании с алгоритмом обратного распространения ошибки [Rum86] он обеспечивает эф-

фективную оптимизацию даже для невыпуклых функций потерь, характерных для задач обу-

чения с подкреплением.  

Пробел в исследованиях заключается в отсутствии эффективных методов онлайн-адапта-

ции, сочетающих надежность традиционных регуляторов с возможностью обучения с помо-

щью нейросетевых подходов. 

Большинство существующих решений либо требуют точной модели объекта, либо осу-

ществляют обучение до развертывания системы, что ограничивает их применимость в усло-

виях непредсказуемых изменений динамики [Саи25, При25].  

Основной вклад данной работы заключается в: 

• проверке стабильности работы гибридной архитектуры «актор–критик» (Actor-Critic – 

A2C), сочетающей ПИД-регуляторы с нейросетевой адаптацией коэффициентов; 

• разработке структуры PPO, сочетающей ПИД-регуляторы с нейросетевой адаптацией 

коэффициентов; 

• сравнении устойчивости и эффективности работы обоих подходов; 

• экспериментальной валидации устойчивости к параметрическим неопределенностям и 

внешним возмущениям; 

• создании симуляционной модели в робототехническом симуляторе CoppeliaSim для ве-

рификации подхода. 

Практическая значимость исследования состоит в потенциальном применении алго-

ритма в: 

• промышленном мониторинге (инспекция трубопроводов, ЛЭП); 

• поисково-спасательных операциях в сложных погодных условиях; 

• сельскохозяйственных технологиях; 

• доставке медицинских грузов в удаленные районы. 

Статья организована следующим образом: описана математическая модель квадрокоптера; 

детализирована архитектура системы управления; представлены экспериментальные резуль-

таты; сформулированы выводы и направления будущих исследований. 
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МАТЕМАТИЧЕСКИЕ МОДЕЛИ СИСТЕМЫ УПРАВЛЕНИЯ 

Квадрокоптер (рис. 1) представляет собой управляемую систему с четырьмя управляю-

щими воздействиями (𝑢1, 𝑢2, 𝑢3, 𝑢4) и шестью степенями свободы: тремя координатами поло-

жения (x, y, z) и тремя углами ориентации (𝜙, θ, ψ). Из-за выраженных нелинейностей модели 

и влияния нестационарных внешних факторов точное математическое описание аппарата за-

труднительно. В подобных условиях методы идентификации, в частности на основе нейрон-

ных сетей, позволяют адекватно восстанавливать текущее состояние системы, что исключает 

необходимость в детальной модели – достаточно лишь мгновенных входных и выходных дан-

ных. 

В работе применяется простая модель [Tri15] с известными параметрами для воспроизве-

дения поведения реального объекта без шума. При этом параметры изначально считаются не-

известными, а состояния оцениваются на основе управляющих сигналов и последующих 

наблюдений. Математическое описание динамики задано в уравнениях (1), где x, y, z – коор-

динаты центра масс относительно системы координат 𝑥𝐼, 𝑦𝐼, 𝑧𝐼 (для осей этой системы коор-

динат далее также применяется обозначение X, Y, Z), а 𝜙, θ, ψ – углы вращения вокруг осей 

𝑥𝐵, 𝑦𝐵, 𝑧𝐵 (см. рис. 1). 

                                              

Рис. 1 Схема квадрокоптера [Ima22] 
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+

1

𝐽𝑧
𝑢4, 

𝑥̈ =
𝑢1

𝑚
(cos 𝜙 sin 𝜃 cos 𝜓 + sin 𝜙 sin 𝜓), 𝑦̈ =

𝑢1

𝑚
(cos 𝜙 sin 𝜃 sin 𝜓 − sin 𝜙 cos 𝜓),      (1) 

𝑧̈ =
𝑢1

𝑚
cos 𝜙 sin 𝜃 − 𝑔, 

где 𝑚, 𝑔, 𝑙  – масса дрона, ускорение свободного падения и длина плеча;  𝐽𝑥, 𝐽𝑦, 𝐽𝑧 – моменты 

инерции относительно соответствующих осей.  

Управляющие воздействия являются комбинацией угловых скоростей вращения пропел-

леров (Ω1, Ω2, Ω3, Ω4): 

𝑢1 = 𝑏(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2),       𝑢2 = 𝑏(Ω4
2 − Ω2

2),

 𝑢3 = 𝑏(Ω3
2 − Ω1

2),      𝑢4 = 𝑑(Ω4
2 + Ω2

2 − Ω1
2 + Ω3

2),
                                   (2) 

где b и d – коэффициенты тяги и крутящего момента соответственно. 
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Также необходимо определить управляющие сигналы с использованием ПИД-регулятора 

в онлайн-режиме. Сначала статические коэффициенты подбираются экспериментально или по 

методу Циглера–Никольса до обеспечения устойчивости и приемлемого качества; эти значе-

ния фиксируются для каждого этапа. Динамические коэффициенты рассчитываются данным 

алгоритмом и добавляются к статическим. 

𝑢(𝑡) = 𝐾𝑝(𝑡)𝑒(𝑡) + 𝐾𝑖(𝑡) ∫ 𝑒(τ)𝑑τ
𝑡

0
+ 𝐾𝑑(𝑡)

𝑑𝑒(𝑡)

𝑑𝑡
 .                                (3) 

Коэффициенты усиления формируются как сумма статической и динамической составля-

ющих: 

[

𝐾𝑝(𝑡)

𝐾𝑖(𝑡)

𝐾𝑑(𝑡)

] = [

𝐾𝑝
static(𝑡)

𝐾𝑖
static(𝑡)

𝐾𝑑
static(𝑡)

] + ∆ [

𝐾𝑝
dynamic(𝑡)

𝐾𝑖
dynamic(𝑡)

𝐾𝑑
dynamic(𝑡)

]                                       (4) 

где 𝐾𝑝
static, 𝐾𝑖

static, 𝐾𝑑
static – постоянные, заранее определенные величины, а 𝐾𝑝

dynamic, 𝐾𝑖
dynamic, 

𝐾𝑑
dynamic – величины, динамически генерируемые нейросетевой моделью на основе текущего 

состояния системы. Нейросеть на основе метода «актор–критик» подробно рассмотрена ниже. 

При построении модели приняты следующие допущения: 

• квадрокоптер рассматривается как симметричное твердое тело; 

• влияние гироскопических эффектов двигателей учитывается через 𝐽𝑖; 

• аэродинамические силы сопротивления пропорциональны квадрату скорости; 

• учитываются ограничения на углы крена и тангажа: |𝜙|, |𝜃| ≤
π

4
. 

Выбранные значения параметров модели квадрокоптера представлены в табл. 1. 

Таблица 1  

Параметры модели квадрокоптера 

Параметр Обозначение Значение 
Единица  

измерения 

Масса m 0.65 кг 

Длина плеча 𝑙 0.23 м 

Момент инерции для оси X 𝐽𝑥 7.5 × 10−3 кг·м² 

Момент инерции для оси Y 𝐽𝑦 7.5 × 10−3 кг·м² 

Момент инерции для оси Z 𝐽𝑧 1.3 × 10−2 кг·м² 

Коэффициент тяги b 3.13 × 10−5 Н/с² 

Коэффициент крутящего момента d 7.5 × 10−7 Н·м/с² 

АРХИТЕКТУРА АДАПТИВНОГО УПРАВЛЕНИЯ 

Модель «актор–критик» 

Предложенная в [Ima22] архитектура представляет собой симбиоз самонастраивающегося 

ПИД-регулятора и глубокой нейронной сети типа «актор–критик», что позволяет сочетать 

преимущества обоих подходов. Общая структура системы управления показана на рис. 2. 

Первый блок архитектуры – это модуль самонастраивающегося ПИД-регулятора. На этом 

этапе проектируется нейросеть, отвечающая за динамическую подстройку коэффициентов 

ПИД-регулятора. Затем управляющее воздействие вычисляется путем подачи ошибок (рассо-

гласований) регулятора на вход этой сети. Полученное на каждом шаге управляющее воздей-

ствие вместе с последними выходными сигналами системы передается во второй блок архи-

тектуры, который представляет собой сеть идентификации. Данная сеть, построенная по прин-

ципу «актор–критик», оценивает новое состояние системы. Фактически комплекс идентифи-
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кации состоит из двух сетей. Первая – сеть Актора – предназначена для аппроксимации реаль-

ного выхода системы. Вторая сеть, Критик, вычисляет функцию ценности входных данных 

сети (состояний среды) и показывает, насколько действие Актора целесообразно в текущем 

состоянии. 

 

 
В скрытых слоях применяется сигмоидная функция активации, тогда как для слоя коэффи-

циентов ПИД-регулятора используется гиперболический тангенс (tanh). В итоге динамические 

коэффициенты ПИД-регулятора (𝐾𝑛
dynamic) рассчитываются по следующей формуле: 

𝐾𝑛
dynamic(𝑘) = 𝑓𝑛(𝑢(𝑘 − 1), 𝑢(𝑘 − 2), 𝑠(𝑘 − 1), 𝑠(𝑘 − 2), 𝑒𝑝(𝑘 − 1), 𝑒𝑖(𝑘 − 1), 𝑒𝑑(𝑘 − 1)),     (5) 

где n = p, i, d;  𝑓𝑛(∙) – нелинейная функция с небольшим количеством весов и смещений, кото-

рые инициализируются вблизи нуля. В сети идентификации Актор имеет два выхода: матема-

тическое ожидание (𝜇) и дисперсию (𝜎). Эти выходные данные подаются в уравнение нор-

мального распределения (𝑁(𝜇𝜎2)), и из него случайным образом извлекается выборка (рис. 3). 

 

Рис. 3 Нормальное распределение [Ima22] 

На рис. 3 𝑠𝑚 – это оценка каждого состояния квадрокоптера (углы ориентации и высота). 

Данная случайная величина является окончательным выходом сети Актора, и ожидается, что 

она будет соответствовать реальному выходному сигналу системы. 

Задача Критика – оценить функцию ценности (𝑣), используя состояния (управляющее воз-

действие и предыдущие выходы системы), тем самым предоставляя Актору обратную связь 

для улучшения его действий. 

В конечном счете, выходные данные сети идентификации системы определяются следую-

щими уравнениями: 

𝜇(𝑘) = 𝑓𝜇(𝑢(𝑘), 𝑠(𝑘 − 1), 𝑠(𝑘 − 2)),                                            (6) 

Входной слой 

Скрытые слои 

Выход-

ной слой 

Самонастраивающийся ПИД-регулятор 

Входной слой 

Скрытые слои 

Выход-

ной слой 

Модель Актор-Критик 

Рис. 2 Схематичное изображение нейронной сети [Ima22] 
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𝜎(𝑘) = 𝑓𝜎(𝑢(𝑘), 𝑠(𝑘 − 1), 𝑠(𝑘 − 2)),                                            (7) 

𝑣(𝑘) = 𝑓𝑣(𝑢(𝑘), 𝑠(𝑘 − 1), 𝑠(𝑘 − 2)),                                            (8) 

где 𝑓𝜇(∙) и 𝑓𝜎(∙)  – соответствующие функции Актора, а 𝑓𝑣(∙) – функция Критика.  

В результате объединения этих двух блоков выходной сигнал первого модуля подается на 

вход второго, формируя единую общую сеть (см. рис. 2). Входными данными для этой объ-

единенной сети являются управляющие воздействия, текущие состояния и ошибки ПИД-ре-

гулятора. Выходами служат оценки каждого состояния и функция ценности входных парамет-

ров сети.  

Модель Proximal Policy Optimization (PPO) 

Данная архитектура также представляет собой симбиоз самонастраивающегося ПИД-регу-

лятора и глубокой нейронной сети, однако вместо классического подхода «актор–критик»  

используется более современный алгоритм Proximal Policy Optimization (PPO) [Sch17], специ-

ально разработанный для повышения стабильности обучения в задачах глубокого обучения 

с подкреплением. 

Общая структура системы управления сохраняется (см. рис. 2), где первый блок – модуль 

самонастраивающегося ПИД-регулятора – функционирует идентично описанному в модели 

«актор–критик». Динамические коэффициенты ПИД-регулятора рассчитываются по фор-

муле (5), и полученное управляющее воздействие вместе с выходными сигналами системы пе-

редается во второй блок архитектуры. 

Второй блок представляет собой усовершенствованную сеть идентификации, построен-

ную по принципу PPO. Как и в классическом подходе «актор–критик», комплекс идентифика-

ции состоит из двух сетей: Актора (политики) и Критика (функции ценности). Однако PPO 

вводит ключевое улучшение – механизм ограничения изменения политики, предотвращаю-

щий дестабилизирующие большие шаги обновления. 

Актор, аналогично предыдущей архитектуре, имеет два выхода: математическое ожидание 

(𝜇) и дисперсию (𝜎), которые подаются в уравнение нормального распределения (𝑁(𝜇𝜎2)) для 

случайной выборки окончательного выхода (см. рис. 3). Критик оценивает функцию ценности 

состояния (𝑣). 

Ключевое отличие PPO заключается в специальной функции потерь для обновления  

Актора, которая включает ограничивающий член (clipping) [Sch17]: 

𝐿𝐶𝐿𝐼𝑃(θ) = 𝐸𝑡[min(𝑟𝑡(θ)𝐴𝑡, clip(𝑟𝑡(θ), 1 − ϵ, 1 + ϵ)𝐴𝑡)], 

где  𝑟𝑡(θ) =
πθ(𝑎𝑡|𝑠𝑡)

πθ𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

 – отношение вероятностей действий новой и старой политики;  𝐴𝑡 – 

оценка преимущества (advantage);  ϵ – гиперпараметр ограничения (выбран равным 0.2). 

Выходные данные сети идентификации определяются уравнениями (6), (7) и (8), анало-

гично модели «актор–критик». Однако процесс обучения существенно отличается: PPO соби-

рает траектории за несколько эпизодов, вычисляет преимущества, а затем выполняет  

несколько эпох оптимизации с ограниченными обновлениями политики. 

В результате объединения блоков формируется единая сеть (см. рис. 2), где входными дан-

ными являются управляющие воздействия, текущие состояния и ошибки ПИД-регулятора, 

а выходами – оценки каждого состояния и функция ценности. Алгоритм PPO обеспечивает 

более стабильное обучение за счет предотвращения резких изменений политики, что особенно 

важно для таких чувствительных систем, как квадрокоптер. 

В предложенной архитектуре используется схема распределенного обучения с независи-

мыми агентами. Для каждого управляющего параметра: высоты (z) и углов ориентации (крена, 

тангажа и рыскания), функционирует выделенный нейросетевой агент, представляющий со-

бой отдельную модель («актор–критик» или PPO). Данные агенты имеют идентичную струк-

туру, но независимые параметры, и обучаются параллельно, специализируясь на управлении 
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исключительно своим целевым состоянием системы. Такой подход позволяет декомпозиро-

вать сложную задачу управления многомерной системой на набор более простых подзадач. 

ОПТИМИЗАЦИЯ 

После определения архитектуры нейронной сети и инициализации весовых коэффициен-

тов и смещений требуется настроить ее параметры с помощью алгоритма оптимизации. 

Основная задача Актора заключается в аппроксимации выходного сигнала системы, 

то есть в минимизации ошибки предсказания (𝑠𝑚 − 𝑠). В свою очередь, цель Критика – снизить 

ошибку временной разницы (Temporal Difference error, 𝛿𝑇𝐷) [Sut18]. Данная ошибка вычисля-

ется по формуле (9), где 𝛾 представляет собой коэффициент дисконтирования, 𝑅𝑘+1 – функ-

цию вознаграждения, а 𝑣𝑘 и 𝑣𝑘+1 – значения функции ценности на шаге k и на следующем 

шаге соответственно. 

𝛿𝑇𝐷 =  𝑅𝑘+1 + 𝛾 𝑣𝑘+1 − 𝑣𝑘.                                                   (9) 

Функция вознаграждения строится как квадратичная. Ее значение тем выше, чем меньше 

абсолютная ошибка, скорость ее изменения и величина управляющего сигнала, в соответствии 

с выражением (10). В этом уравнении 𝑟1, 𝑟2, 𝑟3 – произвольные коэффициенты вознагражде-

ния, а 𝑢 – управляющее воздействие. 

𝑅𝑘+1 = −𝑟1(𝑠𝑚 − 𝑠)2 − 𝑟2(𝑠𝑚̇ − 𝑠̇)2 − 𝑟3𝑢2 .                                (10) 

Для обучения сети определяются две функции потерь: одна для Актора (𝐿𝑎), а другая для 

Критика (𝐿𝑐), как показано в уравнениях (11). Коэффициенты 𝜔1, 𝜔2, 𝜔3 – это постоянные веса, 

задающие значимость каждого компонента функции. Параметр 𝜂, значение которого близко 

к нулю, введен для предотвращения обнуления потерь Актора в случае, когда 𝛿𝑇𝐷 стремится 

к нулю. Это позволяет Актору продолжать исследование среды до достижения оптимальной 

стратегии. 

𝐿𝑎 =  𝜔1(𝑠𝑚 − 𝑠)2(𝜂 + |𝛿𝑇𝐷|) + 𝜔2√2𝜋𝑒𝜎2,     𝐿𝑐 = 𝜔3𝛿𝑇𝐷
2
.                        (11) 

Критик, вычисляя сигнал 𝛿𝑇𝐷, передает его Актору, тем самым оценивая целесообразность 

выбранного действия. Высокое значение 𝛿𝑇𝐷 увеличивает функцию потерь Актора, указывая 

на необходимость выбора иной стратегии. Если же 𝛿𝑇𝐷 близка к нулю, это сигнализирует  

о достижении почти оптимального действия и способствует сходимости алгоритма. 

Общая архитектура сети, объединяющая модуль самонастройки и идентификации, пред-

ставлена на рис. 2. Для ее оптимизации используется совокупная функция потерь (𝐿𝑡), полу-

чаемая суммированием потерь Актора и Критика: 

𝐿𝑡 = 𝐿𝑎 + 𝐿𝑐 .                                                                 (12) 

Модель использует оптимизатор Adam (Adaptive Moment Estimation) [Kin15]. Это распро-

страненный [Zho19, Boc19] алгоритм оптимизации, который применяется для корректировки 

весов модели в процессе обучения нейронных сетей. Adam является одним из наиболее  

эффективных алгоритмов оптимизации в обучении нейронных сетей, который объединяет 

преимущества двух других оптимизаторов: адаптивного градиентного спуска (Adagrad) и сто-

хастического градиентного спуска с инерцией (SGD with momentum). При этом данный подход 

сочетает в себе идеи RMSProp и оптимизатора импульса. 

В отличие от RMSProp, который адаптирует скорость обучения параметров на основе сред-

него первого момента, Adam использует среднее значение вторых моментов градиентов. 

В частности, алгоритм вычисляет экспоненциальное скользящее среднее значение градиента 

и квадратичный градиент. 

Следующие уравнения (13) описывают работу оптимизатора Adam: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡,   𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2, 
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𝑚𝑡̂ =
𝑚𝑡

1−𝛽1
,    𝑣𝑡̂ =

𝑣𝑡

1−𝛽2
,                                                      (13) 

𝑤𝑡+1 = 𝑤𝑡 −
𝛼

√𝑣𝑡̂+𝜀
𝑚𝑡̂,    𝑔𝑡 =

𝜕𝐿𝑡

𝜕𝑤𝑡
. 

Определим, что 𝑤pid и 𝑤ac – веса самонастраивающегося ПИД-регулятора и системы  

«актор–критик» соответственно. Таким образом, скорость изменения функции суммарных  

потерь по каждому параметру вычисляется следующим образом: 

 

𝑔𝑝𝑖𝑑 = (
𝜕𝐿𝑎

𝜕𝑠𝑚

𝜕𝑠𝑚

𝜕𝑢
+

𝜕𝐿𝑎

𝜕𝜎

𝜕𝜎

𝜕𝑢
+

𝜕𝐿𝑐

𝜕𝑣

𝜕𝑣

𝜕𝑢
)

𝜕𝑢

𝜕𝑤𝑝𝑖𝑑
 ,                                     (14) 

𝑔𝑎𝑐 =
𝜕𝐿𝑎

𝜕𝑠𝑚

𝜕𝑠𝑚

𝜕𝑤𝑎𝑐
+

𝜕𝐿𝑎

𝜕𝜎

𝜕𝜎

𝜕𝑤𝑎𝑐
+

𝜕𝐿𝑐

𝜕𝑣

𝜕𝑣

𝜕𝑤𝑎𝑐
 ,                                        (15) 

где  

𝜕𝑢

𝜕𝑤𝑝𝑖𝑑
= 𝑒𝑝

𝜕𝐾𝑝
dynamic

𝜕𝑤pid
+ 𝑒𝑖

𝜕𝐾𝑖
dynamic

𝜕𝑤pid
𝑒𝑑

𝜕𝐾𝑑
dynamic

𝜕𝑤pid
.                          (16) 

 

Важно упомянуть, что весовые коэффициенты 𝑒𝑝, 𝑒𝑖, 𝑒𝑑 задаются извне и не являются  

объектом оптимизации.  

Разработанная архитектура изначально предназначена для систем с одним входом и одним 

выходом (SISO). Однако квадрокоптер представляет собой многоканальную систему (MIMO). 

Данное противоречие разрешается путем декомпозиции: вблизи точки равновесия динамику 

аппарата можно разделить на четыре независимые SISO-подсистемы, отвечающие за углы 𝜙, 

𝜃, ψ и высоту полета 𝑧. При этом подсистемы крена (𝜙) и тангажа (𝜃) являются достаточными 

для осуществления управления положением квадрокоптера по осям X и Y в связанной системе 

координат. 

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ 

Описанные в предыдущих разделах методы были реализованы на языке программирова-

ния Рython с помощью библиотек PyTorch и других. Также была реализована симуляция с по-

мощью CoppeliaSim для наглядности результатов. В качестве демонстрации работы методов 

были выбраны несколько траекторий для пролёта квадрокоптера: квадратная, фигура «Вось-

мёрка», «Слалом», трехмерная синусоида и траектория с резкими поворотами. 

В качестве начального примера была задана траектория в форме квадрата на фиксирован-

ной высоте (рис. 4). В начале полета разброс (𝜎) при подборе коэффициентов велик, что сви-

детельствует об активном поиске агентом оптимальных действий для улучшения идентифи-

кации модели. Это приводит к значительным колебаниям значений коэффициентов ПИД-ре-

гулятора, которые со временем затухают, стабилизируясь в окрестности постоянных величин. 

На рис. 5 и 7 представлены графики углов крена и тангажа для обоих методов, и можно видеть, 

что они справляются с задачей одинаково стабильно. Графики подтверждают, что предложен-

ный в [Ima22] алгоритм успешно выполняет задачу стабилизации ориентации квадрокоптера 

в рамках данного сценария. 

Мониторинг функции вознаграждения и потерь (рис. 6) демонстрирует их стабилизацию 

с течением времени до достижения оптимума в случае метода «актор–критик». Эта динамика 

указывает на успешную оптимизацию весов сети, которая проводилась в режиме онлайн.  

Такой подход обеспечивает высокое быстродействие метода, что позволяет применять его 

на реальных роботизированных платформах. 

В то время как метод «актор–критик» демонстрировал классическую монотонную сходи-

мость, функция потерь PPO вела себя несколько иным образом. Относительно оси Z функция 

потерь демонстрирует в некотором роде случайное поведение, постепенно снижаясь, а отно-

сительно углов – быстро стабилизируется. 
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Рис. 4 Визуализация траектории «Квадрат» 

 

Рис. 5 Контроль углов крена и тангажа  

в случае квадратной траектории 

 

 

Рис. 6 Изменения функций потерь  

для сети агентов во времени для квадратной траектории 
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Рис. 7 Изменения координат квадрокоптера по осям X и Y во времени  

при движении по квадратной траектории 

Данное явление объясняется фундаментальным отличием в природе оптимизируемых 

функций. В методе «актор–критик» функция потерь напрямую отражает ошибку политики 

и её минимизацию. В PPO оптимизируется суррогатная цель, которая является аппроксима-

цией ожидаемого улучшения политики с ограничениями. Найденная PPO политика оказалась 

близка к локальному оптимуму, в окрестностях которого алгоритм продолжает поиск, но огра-

ничивающий механизм (clipping) не позволяет сделать слишком большие шаги, что и прояв-

ляется в колебаниях суррогатной функции для оси Z и её стабилизации для углов, где страте-

гия уже нашла устойчивое решение. 

Наблюдаемое расхождение между динамикой функции потерь и фактической производи-

тельностью политики согласуется с выводами других исследований, применяющих алгоритм 

PPO. Как отмечают создатели алгоритма [Sch17], суррогатная цель 𝐿𝐶𝐿𝐼𝑃является зашумлен-

ным прокси для истинного показателя эффективности, и её значение может ухудшаться даже 

при улучшении политики. Данное поведение дополнительно подчеркивается в современных 

эмпирических исследованиях [Ber19, Eng20], где показано, что успешное обучение с помощью 

PPO сильно зависит от деталей реализации и корректной интерпретации метрик, при этом мо-

ниторинг среднего вознаграждения за эпизод является более надежным индикатором, чем зна-

чение функции потерь. 

Полученные результаты отмечают, что в обучении с подкреплением, в отличие от класси-

ческого контролируемого обучения, динамика функции потерь не всегда является прямым  

индикатором качества обученной политики. PPO может демонстрировать «нестабильные» 

графики потерь, при этом успешно решая поставленную задачу. 

После настройки ПИД-коэффициентов в первом сценарии система управления углами  

Эйлера начинает точно отслеживать заданные значения. Достижение адекватного управления 

ориентацией позволило легко реализовать и точное позиционирование аппарата в простран-

стве, что иллюстрирует рис. 7.  

Для оценки эффективности алгоритмов при выполнении сложных плавных манёвров была 

выбрана траектория в виде фигуры «Восьмёрка» (рис. 8). Как видно из графиков на рис. 9, 

система уверенно выполняет стабилизацию углов крена и тангажа, даже несмотря на непре-

рывные изменения курса. Эволюция функции вознаграждения и потерь (рис. 10) подтверждает 

корректную работу алгоритма «актор–критик»: после начального периода адаптации наблю-

дается их устойчивая сходимость к оптимальным значениям, что свидетельствует об успеш-

ной онлайн-настройке весовых коэффициентов нейронной сети. Функции потерь же для  

метода PPO ведут себя так же нестандартно, как и ранее. Настроенные в первом эксперименте 
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ПИД-коэффициенты показали свою универсальность, обеспечив не только требуемую ориен-

тацию, но и высокую точность следования по пространственной траектории, что наглядно  

демонстрирует рис. 11.  

 

 
Рис. 8 Визуализация траектории «Восьмёрка» 

     

Рис. 9 Контроль углов крена и тангажа в случае траектории «Восьмёрка»  

 

 

Рис. 10 Изменения функций потерь для сети агентов во времени  

для траектории «Восьмёрка» 
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Рис. 11 Изменения координат квадрокоптера по осям X и Y во времени  

при движении по траектории «Восьмёрка» 

 

Следующим этапом стала проверка алгоритмов в условиях, имитирующих объезд непред-

виденных препятствий, – траектория «Слалом», заданная в виде сложной синусоиды с различ-

ными частотами по осям (рис. 12). Анализ графиков ориентации (рис. 13) показывает, что ал-

горитмы оперативно и точно реагируют на частые изменения полетного задания, обеспечивая 

стабилизацию летательного аппарата. Кривые обучения для метода «актор–критик» на рис. 

14, несмотря на повышенную сложность маршрута, вновь демонстрируют характерную дина-

мику: после этапа поиска происходит стабилизация вознаграждения и потерь, что указывает 

на непрерывную и эффективную оптимизацию нейронной сети в реальном времени. Функция 

потерь PPO для вертикальной оси Z проявляла осцилляционный характер, а для углов Эйлера – 

стабилизировалась. Однако в силу суррогатности данного параметра в данном случае на ре-

зультат это не повлияло. Как и в предыдущих случаях, было достигнуто точное позициониро-

вание в пространстве (рис. 15), что критически важно для автономной навигации в сложной 

обстановке.   

 

 

 

Рис. 12 Визуализация траектории «Слалом»  
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Рис. 13 Контроль углов крена и тангажа в случае траектории «Слалом» 

 

Рис. 14 Изменения функций потерь для сети агентов во времени  

для траектории «Слалом» 

                          

Рис. 15 Изменения координат квадрокоптера по осям X и Y во времени  

при движении по траектории «Слалом» 
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Для комплексной проверки системы управления была использована трёхмерная синусои-

дальная траектория, предполагающая одновременное и согласованное изменение положения 

по всем осям (рис. 16). Данный сценарий проверяет способность алгоритма координировать 

многосвязные движения. Результаты, представленные на рис. 17, подтверждают, что квадро-

коптер сохраняет устойчивость и управляемость даже при таком сложном характере полёта. 

Мониторинг показателей обучения метода «актор–критик» (рис. 18) фиксирует плавный  

выход на оптимум, подчёркивая способность алгоритма адаптироваться к многосвязным зада-

чам. Следствием успешного управления ориентацией стала и точная отработка пространствен-

ного пути, что иллюстрирует рис. 19. 

 

 

Рис. 16 Визуализация траектории трёхмерной синусоиды 

                   

Рис. 17 Контроль углов крена и тангажа в случае траектории трёхмерной синусоиды 

 

Рис. 18 Изменения функций потерь для сети агентов во времени  

для траектории трёхмерной синусоиды 
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Рис. 19 Изменения координат квадрокоптера по осям X и Y во времени  

при движении по траектории трёхмерной синусоиды 

Финальный тест в отсутствие шумов моделировал экстремальную ситуацию – траекторию 

с резкими поворотами на 150 градусов (рис. 20). Целью была проверка запаса устойчивости и 

быстродействия системы. Полученные данные (рис. 21) наглядно демонстрируют, что алго-

ритм эффективно парирует столь значительные рассогласования, успешно стабилизируя ори-

ентацию. Динамика функции вознаграждения и потерь для метода «актор–критик» (рис. 22), 

несмотря на агрессивный характер манёвров, показывает устойчивую тенденцию к оптимиза-

ции, что свидетельствует о корректной работе механизма онлайн-обучения. В результате  

система обеспечила точное отслеживание заданной траектории (рис. 23), подтвердив свою 

надёжность. 

 

 

Рис. 20 Визуализация траектории с резкими поворотами 

     

Рис. 21 Контроль углов крена и тангажа в случае траектории с резкими поворотами 
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Рис. 22 Изменения функций потерь для сети агентов во времени  

для траектории с резкими поворотами 

 

Рис. 23 Изменения координат квадрокоптера по осям X и Y во времени  

при движении по траектории с резкими поворотами 

Для проверки устойчивости системы к изменениям параметров в процессе движения 

и оценки эффективности представленного алгоритма была задана динамическая вариация пол-

ной массы квадрокоптера (рис. 24). Моделирование заключается в резком изменении массы 

аппарата через короткий промежуток времени. Рост массы приводит к изменению высоты, что 

требует от системы управления способности адаптироваться к новым условиям. Как видно 

из рис. 24, система успешно компенсирует возникающую ошибку (рассогласование). Неболь-

шие колебания высоты в процессе полета объясняются тем, что моделирование данного слу-

чая происходило при пролёте дрона по квадратной траектории. 

Традиционный ПИД-регулятор, параметры которого настроены для системы с фиксиро-

ванной массой, не может справиться с возмущениями такого рода [Pou12]. В то же время раз-

работанный алгоритм оперативно корректирует свои коэффициенты, что не позволяет ошибке 

накапливаться. Это подтверждает, что метод обладает свойствами адаптивности и способно-

сти к онлайн-самонастройке.  

Также стоит отметить, что метод «актор–критик» справился с изменениями массы лучше, 

чем метод PPO. Хотя к изначальной высоте дрон возвращался почти одновременно в обоих 

методах, отклонение от этой высоты было значительно сильнее для метода PPO. 
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Рис. 24 Стабилизация высоты полета квадрокоптера при изменении массы 

Также для проверки устойчивости системы ко внешним возмущениям в процессе движе-

ния и оценки эффективности алгоритма в модель были добавлены возмущения Гаусса–Мар-

кова [Din21] с помощью следующего уравнения: 

𝑑̇ = −
1

𝜏𝑠
𝑑 + 𝜌𝐵𝑤𝑞𝑤.                                                      (17) 

Эта модель имитирует ветер, меняющийся порывами. Уравнение (17) известно как «фор-

мирующий фильтр» для порывов ветра, где 𝑞𝑤 – независимая постоянная с нулевым средним 

значением; 𝜏𝑠 = 0.3 – время корреляции ветра» 𝐵𝑤 – входная идентифицирующая матрица тур-

булентности; 𝜌 = 0.5 – скалярный весовой коэффициент. На рис. 25 показаны зарегистриро-

ванные возмущения Гаусса–Маркова во время полета квадрокоптера при нулевых начальных 

условиях. Величина возмущений достаточна, чтобы повлиять на эффективность стабилизации 

движения. 

 

 
Рис. 25 Возмущения Гаусса–Маркова,  

значения 𝑑1,  𝑑2,  𝑑3 относятся соответственно к углам 𝜙, θ, ψ 
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В результате проверки работы методов в таких условиях они показали также практически 

идентичные результаты, заключающиеся в некоторых отклонениях от желаемой траектории 

(рис. 26–30).  

                        

Рис. 26 Изменения координат квадрокоптера по осям X и Y во времени  

при движении по квадратной траектории при влиянии возмущений Гаусса–Маркова 

 

Рис. 27 Изменения координат квадрокоптера по осям X и Y во времени при движении по 

траектории «Восьмёрка» при влиянии возмущений Гаусса–Маркова 

 

Рис. 28 Изменения координат квадрокоптера по осям X и Y во времени при движении по 

траектории «Слалом» при влиянии возмущений Гаусса–Маркова 
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Рис. 29 Изменения координат квадрокоптера по осям X и Y во времени  

при движении по траектории трёхмерной синусоиды при влиянии  

возмущений Гаусса–Маркова 

 

 
Рис. 30 Изменения координат квадрокоптера по осям X и Y во времени  

при движении по траектории с резкими поворотами  

при влиянии возмущений Гаусса–Маркова 

 

По сравнению с ПИД-регулятором, жестко заданные коэффициенты которого со временем 

приводят к значительной нескомпенсированной ошибке, данные методы адаптивно перестра-

ивают свои параметры. Это достигается за счет того, что регулятор в реальном времени опти-

мизирует коэффициенты, опираясь на динамику ошибки, её скорость, величину управляющего 

сигнала и историю состояний системы. 

Для более наглядного сравнения предложенных методов были посчитаны RMSE-ошибки 

для каждой траектории при влиянии возмущений Гаусса–Маркова. Результаты приведены 

в табл. 2. 

Как видно из табл. 2, отличия проявляются практически всегда только после 4 знака после 

запятой, что несущественно. Однако средняя разница во времени обучения архитектур соста-
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вила 83.33, так как среднее время обучения для «актор–критик» метода составило 131.21 се-

кунды и 47.88 секунды для PPO метода. Таким образом, время обучения у метода, основанного 

на PPO, оказалось примерно в 2.8 раза меньше, чем у метода, основанного на подходе «актор–

критик». Поэтому можно сделать вывод, что эффективность работы метода PPO в части вре-

мени обучения оказалась выше, чем метода «актор–критик», при тех же результатах. 

Таблица  2  

Ошибки RMSE для двух методов 

Траектория A2C PPO 

Квадрат 0.6068 0.6071 

Фигура «Восьмёрка» 0.2786 0.2787 

«Слалом» 0.2799 0.2800 

Трёхмерная синусоида 0.3183 0.3186 

Резкие повороты 0.2784 0.2787 

 

ЗАКЛЮЧЕНИЕ 

В данной работе представлено сравнение метода [Ima22] самонастройки ПИД-регулятора, 

основанного на гибридной нейросетевой архитектуре по схеме «актор–критик», с методом  

такой же самонастройки, но основанной на методе Proximal Policy Optimization (PPO) [Sch17]. 

Разработанные подходы позволяют в реальном времени использовать адаптированные коэф-

фициенты регулятора и идентифицировать состояния системы. Методы не только отличаются 

относительно простой структурой, но и применимы к реальным объектам управления с одним 

входом и выходом (SISO). В исследовании использованы преимущества нейронных сетей 

и оптимизатора Adam, обеспечивающего высокую скорость и надежность вычислений. 

Результаты моделирования продемонстрировали способность алгоритмов отслеживать 

сложные траектории даже при случайной начальной инициализации весов. Методы показали 

эффективность управления параметрами квадрокоптера на траекториях разной сложности, 

не выявив значительного отклонения от идеального маршрута. 

Также система управления продемонстрировала устойчивость к изменениям параметров 

как внутренних, так и внешних – изменение массы и порывы ветра соответственно. При этом 

метод, использующий архитектуру «актор–критик», справился с возмущениями массы эффек-

тивнее, чем метод, использующий архитектуру PPO. 

Результаты прямого сравнения методов не выявили значительной разницы между ними, 

за исключением влияния изменения массы на высоту – ошибка RMSE даже в условиях возму-

щений Гаусса–Маркова не показала существенных отличий. Однако время обучения архитек-

туры PPO оказалось почти в 3 раза меньше, чем аналогичное время для архитектуры «актор–

критик». 

Таким образом, методы могут быть использованы в дальнейшей разработке системы 

управления квадрокоптером. При этом метод PPO является предпочтительным в условиях 

сложных систем, долгих полетов и тому подобного в силу эффективности обучения, а метод 

«актор–критик» является предпочтительным в условиях изменения массы. 

В дальнейшем планируется провести сравнение метода, основанного на ПИД+PPO  

системе, с другими подходами, использующими, например, метод Soft Actor Critic (SAC), ко-

торый также доказал свою эффективность при работе с квадрокоптерами [Mah24]. 
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Аннотация:  Пропорционально-интегрально-дифференци-
альные (ПИД) регуляторы широко применяются в промыш-
ленности и исследовательских задачах благодаря простоте 
и эффективности. Однако при наличии параметрических не-
определенностей и внешних возмущений, особенно в дина-
мически сложных системах вроде квадрокоптеров, остаётся 
актуальной задача обеспечения их робастности. В работе 
сравнивается самонастраивающаяся ПИД-схема, использую-
щая подкрепляющее обучение и гибридную нейросетевую 
архитектуру «актор–критик» для управления ориентацией 
и высотой полёта квадрокоптера без априорной математиче-
ской модели, с подобной архитектурой, использующей ме-
тод Proximal Policy Optimization (PPO) для оптимизации ра-
боты. В обоих случаях коэффициенты усиления регулятора 
состоят из статической и адаптивной динамической части, 
при этом обучаются только переменные компоненты. 
Нейросеть включает два скрытых слоя с сигмоидальными ак-
тивациями. Обучение проводилось онлайн с оптимизатором 
ADAM и обратным распространением ошибки, что обеспечи-
вает быструю адаптацию ко внешним возмущениям и изме-
нению массы аппарата. Эксперименты показали высокую 

Abstract:  Proportional-integral-differential (PID) regulators are 
widely used in industry and research tasks due to their simplicity 
and efficiency. However, in the presence of parametric uncer-
tainties and external disturbances, especially in dynamically com-
plex systems like quadcopters, the task of ensuring their robust-
ness remains urgent. The paper compares a self-adjusting PID 
scheme using reinforcement learning and a hybrid Actor-Critic 
neural network architecture to control the orientation and alti-
tude of a quadcopter without an a priori mathematical model, 
with a similar architecture using the Proximal Policy Optimization 
(PPO) method for optimization of work. In both cases, the con-
troller gains consist of a static and adaptive dynamic part, while 
only the variable components are trained. The neural network 
includes two hidden layers with sigmoid activations. The training 
was conducted online with the ADAM optimizer and error prop-
agation, which ensures rapid adaptation to external disturbances 
and changes in the mass of the vehicle. The experiments showed 
high stability of the systems to mass variations and wind gusts 
when using trajectories of varying complexity. A comparison of 
the two methods showed that they did not have a significant dif-
ference in deviations from the ideal trajectory; however, the PPO 
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устойчивость систем к вариациям массы и порывам ветра 
при использовании траекторий различной сложности. Срав-
нение двух методов показало, что значительной разницы 
в отклонениях от идеальной траектории у них нет, однако ме-
тод PPO обучался в 2.8 раза быстрее, чем стандартный «ак-
тор–критик». Кроме того, метод PPO показал большее откло-
нение от идеальной высоты при изменении массы дрона в 
полёте. Результаты подтверждают потенциал гибридных 
нейросетевых структур для адаптивного управления в усло-
виях неопределённости и рекомендуют разработанный алго-
ритм к практическому применению в автономных БПЛА, при 
этом архитектура, использующая стандартную модель «ак-
тор–критик», предпочтительнее при изменениях массы 
квадрокоптера в полёте, а архитектура, использующая PPO – 
при сложных, длинных маршрутах. 

method was trained 2.8 times faster than the standard Actor-
Critic. In addition, the PPO method showed a greater deviation 
from the ideal height when changing the mass of the drone in 
flight. The results confirm the potential of hybrid neural network 
structures for adaptive control in conditions of uncertainty and 
recommend the developed algorithm for practical use in auton-
omous UAVs. The architecture using the standard Actor-Critic 
model is preferable for changes in the mass of a quadcopter in 
flight, and the architecture using PPO for complex, long routes. 

Ключевые слова:  Адаптивное ПИД-регулирование; обуче-
ние с подкреплением; квадрокоптер; нейросеть; «актор–кри-
тик»; самонастраивающийся регулятор; БПЛА 

Key words: Adaptive PID control; Reinforcement learning; Quad-
copter; Neural network; Actor-Critic; Self-adjusting controller; 
UAV 
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