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Проведена классификация носимых медицинских устройств для мониторинга состояния пациентов. Подчеркнуты осо-

бенности использования алгоритмов машинного обучения для носимых устройств в целях диагностики заболеваний, 

фиксации приступов, обнаружения аритмии, падений, стресса, распознавания физической и эмоциональной активности, 

назначения реабилитации. Рассмотрены методы машинного обучения в частном случае применения носимого устрой-

ства для наблюдения сердечной аритмии пациента. Проведен анализ исследований, в которых в качестве алгоритмов 
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ности, архитектура сверточной нейронной сети для классификации аритмии и фибрилляции предсердий. Выявлены 

проблемы и ограничения использования машинного обучения в носимых устройствах. Предложены оптимальные ре-

шения проблем, связанных с надежностью и доступностью данных, выбором модели машинного обучения, безопасно-
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ВВЕДЕНИЕ  

Для успешной диагностики и лечения пациентов, особенно с хроническими заболевани-

ями, современная медицина прибегает наряду с другими методами к непрерывному отслежи-

ванию их состояния для эффективного последующего лечения. В этих случаях роль носимых 

устройств и вспомогательных гаджетов трудно переоценить. Носимые устройства диагно-

стики и мониторинга, которые активно разрабатываются и модернизируются для медицин-

ского применения, стали чаще использоваться как в стационарном, так и амбулаторном режи-

мах наблюдения за больными. 

К носимым устройствам относятся устройства, которые пациенты могут надеть или уста-

новить на части своего тела для того, чтобы в непрерывном режиме отслеживать различные 

физиологические параметры через систему датчиков. В устройства могут быть вмонтированы 

датчики температуры, давления, оптические датчики, акселерометры, биометрические дат-

чики, сенсоры электрокардиограммы (ЭКГ), гироскопы, пульсоксиметры и др. Данные, кото-

рые собирают датчики, необходимо передавать и обрабатывать в непрерывном режиме в цен-

трах накопления информации для принятия решений медицинским персоналом в интересах 

здоровья пациентов.  

Искусственный интеллект (ИИ) привлек внимание исследователей биомедицинской от-

расли благодаря своему перспективному потенциалу в обработке огромных объемов данных, 
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получении точных результатов и управлении процессами самыми оптимальными способами. 

Хотя вычислительная техника для принятия решений и прогнозирования последствий заболе-

ваний использовались давно, в современных условиях развития медицины компьютеры  

и алгоритмы помогают надежно решать большинство повседневных задач и объяснять полу-

ченные результаты. Способность компьютера или робота копировать человеческий интеллект 

с помощью программного обеспечения и алгоритмов составляет суть ИИ, который способен 

выполнять интеллектуальные процессы, в числе которых визуализация, поиск лекарств, логи-

ческие рассуждения, управляемая хирургия и обучение на основе знаний.  

В исследовании обсуждается важность носимых устройств и данных, собранных с этих 

устройств, для диагностики различных заболеваний, а также эффективность использования 

методов машинного обучения (МО) для классификации, выявления аритмии с использованием 

данных ЭКГ. Цель работы – провести анализ последних исследований в области машинного 

обучения для носимых медицинских устройств с акцентом на решение проблем и ограниче-

ний, с которыми сталкиваются приложения МО. Это такие проблемы, как доступность, надеж-

ность и ограниченная размерность данных, выбор модели, безопасность и конфиденциаль-

ность, подключение, энергопотребление и хранение.  

НОСИМЫЕ МЕДИЦИНСКИЕ УСТРОЙСТВА И АЛГОРИТМЫ МАШИННОГО ОБУЧЕНИЯ 

Показания стационарных приборов в медицинских учреждениях могут быть более точ-

ными, чем зафиксированные носимыми устройствами, но в зависимости от области примене-

ния и медицинских рекомендаций часто их точность считаются приемлемой для диагностиро-

вания и назначения персонализированного лечения. Например, для наблюдения сердечно-со-

судистых аритмий ЭКГ служит основным диагностическим и лечебным инструментом.  

Однако обычные мониторы ЭКГ могут быть неудобны для пациентов, поскольку требуют  

использования гелиевых электродных кабелей и внешних электронных инструментов для  

получения сигналов. Более того, они обычно ограничены контролируемыми условиями лабо-

ратории больницы или поликлиники, измеряют данные пациента в состоянии покоя. Значи-

тельная часть информации о работе сердца «вне медицинского учреждения» теряется, что  

делает стационарные мониторы ЭКГ непрактичными для непрерывного наблюдения, напри-

мер, с учетом физических и эмоциональных нагрузок. Это представляет проблему для паци-

ентов с сердечно-сосудистыми заболеваниями, которым необходим непрерывный анализ со-

стояния их здоровья – они не могут позволить себе финансовые затраты и ежедневное посе-

щение стационара. Такие же соображения относятся и к другим носимым гаджетам. Поэтому 

носимые устройства представляют собой более гибкое и удобное решение для непрерывного 

мониторинга. В табл. 1 систематизированы данные о современных носимых медицинских 

устройствах.  

Носимые устройства относятся к категории Интернета медицинских вещей (IoMT), кото-

рый включает стационарные, имплантируемые и периферийные устройства, используемые 

в медицинских учреждениях. Они обычно удаленно взаимодействуют с мобильными устрой-

ствами, а также могут подключаться к сети, как показано на рис. 1.  

Машинное обучение – это широко используемый метод искусственного интеллекта для 

предсказания закономерностей. МО можно классифицировать в зависимости от структуры  

алгоритма и типа обучения как контролируемое, неконтролируемое обучение и обучение 

с подкреплением. В контролируемом обучении алгоритм более простой, точный и обучается 

на входных архивных данных, что позволяет прогнозировать будущие события. Методы  

неконтролируемого обучения могут выявлять закономерности в наборах данных, даже если 

данные неправильно классифицированы или помечены. Обучение с подкреплением относится 

к процессу, при котором агент взаимодействует с окружающей средой, приобретая знания 

об оптимальной политике посредством серии проб и ошибок для решения последовательных 

задач принятия решений. 
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Таблица 1  

Область применения и измеряемые параметры носимых медицинских устройств 

Наименование 

носимого 

устройства 

Область применения 
Измеряемые параметры 

человека 

Наличие 

функции 

удаленного 

мониторинга 

Умные часы,  

браслет 
мониторинг основных параметров 

состояния человека, слежение за 

подвижностью, качеством сна, 

питания с высокой точностью 

температура тела, пульс, арте-

риальное давление, уровень 

холестерина, уровень мочевой 

кислоты, сатурация 

да 

Устройство  

комплексного  

медицинского  

наблюдения  

 

мониторинг физиологических по-

казателей человека, параметров 

активности и сна, симптомов за-

ражения инфекцией 

температура тела, пульс, сер-

дечный ритм, частота дыхания, 

анализ активности, сна и по-

ходки; фиксация рвоты, чиха-

ния, кашля. 

да 

Одноразовый  

ЭКГ-пластырь 
фиксация сердечного ритма при 

физической активности и отдыхе, 

реакции на препараты и нагрузку 

сердечный ритм да 

Сенсорная система 

мониторинга  

сахарного диабета  

измерение уровня глюкозы в  

крови для больных сахарным диа-

бетом 

уровень глюкозы да 

Умное кольцо отслеживание основных парамет-

ров состояния здоровья 

сердечный ритм, сатурация, 

параметры сна и физической 

активности 

да 

Монитор Холтера мониторинг нарушений ритма и 

проводимости сердца, выявление 

аритмии, блокады, наличия им-

пульсов в миокарде 

сердечный ритм, частота со-

кращений, сердечные интер-

валы  

нет 

Смарт-очки  

дополненной и  

виртуальной 

реальности 

применение при реабилитации 

после травм, лечения фобий, 

управления болью 

для терапии да 

Умные текстильные 

изделия 

отслеживание основных параметров 

пациента, падения пожилых людей. 

пульс, частота дыхания, актив-

ность 

да 

Умная контактная 

линза 

отслеживает внутриглазное давле-

ние при глаукоме 

внутриглазное давление да 

 

 

 

Рис. 1   Схема использования носимых медицинских устройств 
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В здравоохранении крайне мало исследований, посвященных применению машинного 

обучения для носимых устройств. Однако, учитывая огромные массивы медицинских данных 

о пациентах, необходимость индивидуального анализа, сбора и ведения подробных записей 

о состоянии их здоровья, применение систем машинного обучения помогает автоматически 

выявлять закономерности и делать прогнозы на основе имеющихся данных. Благодаря исполь-

зованию систем МО становится возможным эффективное управление большими объемами 

медицинских данных, улучшение процессов диагностирования и принятия решений о персо-

нализированном лечении с более высоким уровнем точности.  

Машинное обучение также позволяет носимым устройствам принимать автономные реше-

ния без необходимости явного программирования, разработанного для конкретного сценария, 

опираясь на знания, полученные из прошлого опыта. Многие приложения здравоохранения 

и ухода за пожилыми людьми используют алгоритмы МО, такие как диагностика заболеваний, 

обнаружение приступов, обнаружение аритмии, падений, стресса, распознавание физической 

и эмоциональной активности, назначение реабилитации. Применение приложений МО для  

носимых устройств только набирает силу на рынке, несмотря на множество научных исследо-

ваний в области ИИ и телемедицины. 

Датчики в носимых устройствах являются важным источником данных, и алгоритмы  

машинного обучения могут использоваться для извлечения признаков из этих данных с целью 

обнаружения и изучения полезных закономерностей. Несмотря на стремительный рост носи-

мых устройств, в этой области по-прежнему необходимы дальнейшие исследования для повы-

шения их точности и эффективного решения задачи приспособленности носимых медицин-

ских приборов к строению человеческого тела и его параметрам. 

МАШИННОЕ ОБУЧЕНИЕ НА ПРИМЕРЕ  

ИНТЕЛЛЕКТУАЛЬНОГО НОСИМОГО УСТРОЙСТВА МОНИТОРИНГА АРИТМИИ 

Рассмотрим использование методов МО в частном случае применения носимого устрой-

ства для наблюдения аритмии пациента. Сердечная аритмия – это нарушение ритма работы 

сердца. Электрокардиограмма нормального сердечного сокращения здорового человека имеет 

характерную форму, показанную на рис. 2. Зубец P указывает на деполяризацию предсердий, 

за которым следует комплекс QRS, указывающий на деполяризацию желудочков, и зубец T, 

указывающий на реполяризацию желудочков. 
 

 

Рис. 2   Электрокардиограмма здорового человека 

Изменения в ЭКГ могут указывать на скрытые патофизиологические изменения.  Наиболее 

распространенным типом нерегулярной аритмии, которую можно распознать по изменениям 

ЭКГ, является фибрилляция предсердий. Она характеризуется дезорганизованными электри-

ческими импульсами предсердий и увеличивает риск инсульта до 17% ежегодно [Кас20]. 

Кроме того, фибрилляция предсердий с устойчивой частотой желудочковых сокращений  
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более 110 ударов в минуту может привести к кардиомиопатии, сердечной недостаточности 

и внезапной сердечной смерти при отсутствии адекватного лечения [Бык13]. Распространен-

ность фибрилляции предсердий в мире оценивается в [Тур18] примерно в 46 миллионов чело-

век ежегодно, причем до трети этих людей не имеют симптомов и, находясь в неведении, под-

вергаются повышенному риску инсульта. 

Помимо фибрилляции предсердий, существуют и другие аритмии, о которых могут сигна-

лизировать носимые устройства ЭКГ, включая преждевременное сокращение предсердий или 

желудочков, трепетание предсердий, атриовентрикулярную реципрокную тахикардию, атри-

овентрикулярную узловую реципрокную тахикардию и сердечную блокаду разных степеней. 

Несколько недавних работ продемонстрировали использование носимых технологий, способ-

ных идентифицировать преждевременные сокращения предсердий или правого желудочка 

сердца с точностью более 97% [Men22, YuJ21, Губ21]. Класс злокачественных аритмий, при-

мерами которых являются желудочковая тахикардия и фибрилляция желудочков, имеет высо-

кий риск прогрессирования до остановки сердца или даже смерти [Zip98]. 

Однако носимые устройства ограничены в своих возможностях обнаружения аритмий,  

отличных от фибрилляции предсердий, особенно желудочковой тахикардии или фибрилляции 

желудочков. В целом, существует ограниченное количество исследований, посвященных  

носимым устройствам с ИИ для мониторинга аритмии. В некоторых исследованиях для изу-

чения применения ЭКГ с ИИ используются коммерчески доступные носимые устройства, 

например, Amazfit Band 1S (рис. 3, а) [Che20], биосенсоры HealthyPiV3 [Pan21] или пульсо-

метр Polar H7 [Low20] (рис. 3, б). Распространены смарт-часы с одним каналом ЭКГ, которые, 

как доказано, обнаруживают фибрилляцию предсердий у пациентов [Per19]. Другое устрой-

ство, разработанное для мониторинга и обнаружения фибрилляции предсердий, включает 

в себя беспроводной одноканальный ЭКГ-пластырь, фиксируемый на груди (рис. 3, в), кото-

рый обеспечивает мониторинг ЭКГ в реальном времени с использованием облачного анализа 

данных и обмена данными с медицинским учреждением [Sha20]. Индивидуальный носимый 

ЭКГ-регистратор на запястье [FuW21] при исследовании показал высокую точность 99,4% при 

наблюдении аритмии, хотя использовался небольшой набор данных от пациентов. Наконец, 

был описан нагрудный ремень для регистрации ЭКГ с одним каналом, который передает дан-

ные в облачный сервис для анализа. Анкетирование пользователей показало, что 77% участ-

ников предпочли нагрудный ремень стандартному монитору Холтера с тремя каналами. Чув-

ствительность (вероятность получения положительного результата теста при болезни) и спе-

цифичность (вероятность получения отрицательного результата теста без болезни) составили 

100% и 95,4% соответственно [San21]. 

 

 
                а                                                 б                                                                  в 

Рис. 3   Носимые устройства для мониторинга аритмии 

а –  ЭКГ-регистратор Amazfit Band 1S на запястье; б – беспроводный одноканальный  

ЭКГ-пластырь; в –  нагрудной пульсометр Polar H7 

 

Большинство исследований носимых устройств ЭКГ с ИИ проводилось с использованием 

общедоступных баз данных, таких как PhysioNet и MIT-BIH, но некоторые немногие исследо-

вательские группы самостоятельно получали данные от пациентов. Анализируемые наборы 

данных включали аннотации врачей, которые служили справочной информацией для обуче-

ния алгоритма ИИ. 
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Машинное обучение и глубокое обучение (ГО) широко применяются к данным ЭКГ для 

выявления аритмий. Несмотря на относительно низкую производительность, МО использу-

ется для выявления аритмии из-за некоторых ограничений ГО, включая ресурсоемкие гипер-

параметры для поиска оптимальной конфигурации сети и сложности в понимании правил,  

лежащих в основе обученных моделей прогнозирования. Тем не менее, ГО продемонстриро-

вало незначительные улучшения для выявления аритмии. Различное разрешение выборки  

может представлять собой проблему для этих методов, но было показано, что можно точно 

выявлять аритмии, используя данные ЭКГ с пониженной дискретизацией [Ben22]. 

Подходы МО для носимых устройств часто включают в себя использование метода опор-

ных векторов SVM для классификации аритмии [Baz20, Smi18]. Основная идея метода заклю-

чается в построении гиперплоскости, разделяющей объекты выборки оптимальным способом. 

Алгоритм работает в предположении, что чем больше расстояние (зазор) между разделяющей 

гиперплоскостью и объектами разделяемых классов, тем меньше будет средняя ошибка клас-

сификатора. Применяется также метод случайного леса [Sha20, Mei18], когда вместо одного 

решающего дерева создается множество деревьев. Для каждого отдельного дерева вводится 

обучающая выборка путем случайного извлечения с возвращением. При каждом разветвлении 

дерева выбирается случайное подмножество признаков, а не все признаки сразу. Прогноз  

вырабатывается агрегатированием результатов всех деревьев и решение принимается боль-

шинством голосов.  

Многоступенчатые и многоуровневые системы классификации выводят локальные харак-

теристики активности предсердий и желудочков посредством комбинации методов SVM  

и деревьев решений, а также глобальных характеристик из необработанной записи ЭКГ, что, 

в конечном итоге, приводит к классификации через линейный метод SVM. Например, в работе 

[Tan20] предложен метод SVM с повернутым линейным ядром, в котором обучаются два клас-

сификатора – один на глобальном наборе данных, а другой – на наборе данных, зависящем 

от пациента. Получают две разные дискриминантные гиперплоскости, а окончательная гипер-

плоскость, полученная путем поворота первой гиперплоскости на определенную величину 

в направлении второй гиперплоскости, приводит к улучшенной чувствительности.  

Аналогичным образом, этот метод МО использовался с классификатором декоррелирован-

ных диаграмм Лоренца межсердечных интервалов [Low20] и с другим классификатором,  

построенным на признаках, извлеченных с помощью методов предварительной обработки 

из диаграмм Пуанкаре плотностей, которые представляли сегменты ЭКГ [Bas21]. В качестве 

альтернативы было продемонстрировано использование SVM с помощью метода полуконтро-

лируемого обучения [Hua18], в то время как гибридная структура эффективно объединяла пре-

имущества ансамблевого обучения и эволюционных вычислений для максимальной точности 

классификации аритмии [Pła20]. 

Что касается подходов глубокого обучения для неструктурированных данных, архитектура 

сверточной нейронной сети (CNN) была применена для классификации аритмии в работах 

[Kar22, Zha22] и фибрилляции предсердий в исследовании [Ram21]. Другие архитектуры, 

представляющие интерес для классификации фибрилляции предсердий, включают глубокую 

плотно связанную нейронную сеть на основе 12-канальной ЭКГ [Cai20], нейронную сеть пря-

мого распространения на основе признаков, охватывающих интервалы RR между последова-

тельными зубцами на кардиограмме [Che22]. Были также представлены гибридные конструк-

ции, часто включающие архитектуру на основе расширенного метода SVM с прогнозами 

от CNN [MaC21]. В исследовании [Tan20] была предложена универсальная сверточная 

нейронная сеть (Generic CNN), подходящая для всех пациентов, и настроенная специализиро-

ванная сверточная нейронная сеть, полученная путем точной настройки предыдущей модели 

относительно конкретного человека [LiY18]. Другим интересным подходом является исполь-

зование глобальной гибридной CNN для улучшения извлечения признаков и классификации 

данных ЭКГ, описанный в научной статье [Zha21]. 



 Ирзаев Г. Х. — Проблемы внедрения алгоритмов машинного обучения …  25 

 

Предыдущие исследования также разрабатывали легкие модели глубокого обучения с ис-

пользованием облачных приложений для эффективной классификации данных ЭКГ. Эти под-

ходы используют слои объединенной рекуррентной нейронной сети (RNN) вместо стандарт-

ных слоев [Jeo20]. Применение методов сжатия [Lee22] и преобразования (Accu 99,60%) 

[Rib22] для уменьшения размера модели с точки зрения вычислительных параметров, привело 

к снижению потребления памяти и времени вывода. В качестве альтернативы данные ЭКГ 

могут быть сжаты для обеспечения классификации фибрилляции предсердий в реальном вре-

мени [Che20b, Zha20]. 

ПРОБЛЕМЫ И ОГРАНИЧЕНИЯ ИСПОЛЬЗОВАНИЯ МАШИННОГО ОБУЧЕНИЯ  

В НОСИМЫХ МЕДИЦИНСКИХ УСТРОЙСТВАХ 

Доступность и надежность данных  

Методы машинного обучения, особенно в здравоохранении, требуют наличия достаточ-

ного количества обучающих данных для получения точных результатов для новых наборов 

данных. Надежность данных имеет первостепенное значение для пациентов и врачей при при-

нятии обоснованных медицинских решений, которые в некоторых ситуациях могут иметь 

опасные для жизни последствия. Чтобы гарантировать надежность данных, крайне важно про-

водить разнообразные клинические испытания и предоставлять четкую отчетность о резуль-

татах. Это необходимо для оценки различных технологий и определения перспектив будущих 

исследовательских проектов. Более того юридические аспекты сбора и использования инфор-

мации должны быть строго определены и регламентированы. 

Клиническая надёжность носимых устройств обусловлена тем, что они собирают меньше 

информации, чем их стационарные аналоги. Например, ЭКГ носимых устройств обычно реги-

стрируется в одном-трёх каналах, в то время как стационарно используемые устройства имеют 

двенадцать каналов. Данные, собранные носимыми устройствами, зачастую являются дис-

кретными или зашумленными. Кроме того, эффективность соответствующих алгоритмов ИИ 

в режиме реального времени может быть снижена из-за ограниченной емкости аккумулятора 

носимого устройства или из-за облачной обработки данных, ограничений для подключения 

к беспроводным сетям в сельской местности. 

После записи с помощью носимых устройств данные обычно просматриваются врачами 

для лучшего понимания болезни пациента, однако диагнозы и прогнозы, предоставляемые  

алгоритмами ИИ, не так охотно принимаются врачами, поскольку для них алгоритмы пред-

ставляют «черный ящик». То есть алгоритм ИИ может принять решение о конкретном меди-

цинском состоянии, но отсутствие физиологического понимания делает надежность таких  

решений неопределенной по клиническим стандартам.  

Необходимость предоставления физиологических данных связана с двумя ограничениями. 

Во-первых, определение суммарных признаков, учитывающих предметную область, для  

использования ИИ снижает размерность данных и может, таким образом, ограничивать потен-

циал прогнозирования за счёт более глубокого понимания физиологических процессов. Дей-

ствительно, для проведения контролируемого обучения и, следовательно, соответствия кли-

ническим стандартам понимания физиологических процессов, данные должны быть обрабо-

таны для получения транслируемых суммарных признаков. Например, для анализа ЭКГ  

такими характеристиками могут быть интервал R–R, ширина и амплитуда комплекса QRS, 

а также элевация (смещение сегмента ЭКГ вверх от изоэлектрической линии) или депрессия 

сегмента ST. Этот подход основан на знании, какие суммарные признаки необходимо опреде-

лить. К сожалению, определение транслируемых характеристик основано на тех, которые уже 

известны традиционной медицине. Эти характеристики наиболее очевидны для интерпрета-

ции человеком, но подрывают главное преимущество использования ИИ – способность при-

нимать решения, выходящие за рамки человеческого понимания. Во-вторых, возможно целе-

сообразно выполнить такие этапы обработки, как усечение, фильтрация или понижение  

частоты дискретизации данных, чтобы сделать физиологические детали более очевидными 
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или оптимизировать входные данные перед запуском алгоритма ИИ. Однако эти этапы также 

потенциально удаляют ценную информацию, выходящую за рамки уровня человеческой  

интерпретации. Для достижения компромисса между более глубокими знаниями и понима-

нием физиологических особенностей можно использовать тепловые карты, выделяющие вре-

менной сегмент ЭКГ, наиболее важный для классификации [Lee21]. 

Другая проблема, с которой сталкивается врач при анализе диагнозов ИИ, заключается 

в отсутствии стандартов для определения того, какой уровень правильности достаточен для 

замены врача в качестве основного эксперта. Такой порог особенно важно учитывать в кон-

тексте обучения алгоритмов ИИ врачами-специалистами, поскольку в этом случае диагнозы 

ИИ соотносятся с наиболее лучшим клиническим стандартом, а не со средним значением. 

Кроме того, этот стандарт предполагает, что все пациенты имеют доступ к лучшему врачу-

специалисту, с которым сравнивается алгоритм ИИ, хотя в обычных условиях не все пациенты 

имеют доступ к опытным врачам, тем более в режиме реального времени. Таким образом,  

носимые устройства в сочетании с алгоритмами ИИ обеспечивают гораздо более качествен-

ный мониторинг пациентов и имеют более высокий стандарт диагностической надежности. 

Дополнительным ограничением современных методов ИИ является то, что обучение алго-

ритмов требует наличия качественных данных. В большинстве случаев такие наборы данных 

должны быть достаточно большими, чтобы их можно было разделить на обучающие и тесто-

вые, а также следить, чтобы большинство полей были полными и очищенными от ошибочной 

информации. Однако разработчикам следует помнить, что каждая база данных имеет свои 

ограничения, которые сужают область ее использования. После принятия алгоритма необхо-

дима постоянная клиническая валидация и очистка после применения базы данных для под-

держания точности и корректности предсказаний. 

Проблема выбора модели машинного обучения 

При выборе модели МО для носимых устройств необходимо учитывать несколько факто-

ров. Одним из основных критериев является минимизация меры ошибки, используемой для 

решения задач регрессии, или максимизация шкалы оценки, используемой для определения 

точности классификации. Часто наблюдается, что обучение комбинации различных моделей 

дает наилучшие результаты. Более того, ключевым фактором, который следует учитывать,  

является интерпретируемость или объяснимость модели, что имеет большое значение, осо-

бенно в приложениях здравоохранения. В таких ситуациях результат классификации, регрес-

сии или кластеризации должен быть понятным и содержательным для пользователя, что  

делает его ключевым критерием. В этом контексте модели на основе деревьев часто считаются 

более интерпретируемыми, чем модели на основе нейронных сетей. Другим важным фактором 

является размер модели, который необходимо учитывать при адаптации модели к носимому 

устройству с ограниченной памятью. Кроме того, крайне важно учитывать вычислительные 

сложности как вывода, так и онлайн-обучения на устройстве для персонализации. Это осо-

бенно важно, учитывая ограниченные вычислительные возможности носимых устройств для 

мониторинга здоровья. 

Безопасность и конфиденциальность 

Получение данных от пользователей через носимые устройства и последующая передача 

этих данных в сервисы машинного обучения на облачных платформах, как показано на рис. 1, 

представляет собой процесс, уязвимый для ряда угроз безопасности и конфиденциальности. 

Данные пользователей могут подвергнутся кибератакам. Большинство современных смартфо-

нов оснащены модулями Bluetooth и Wi-Fi, необходимыми для подключения фитнес-трекеров 

к их приложениям, но остаются уязвимыми для различных нарушений безопасности, что уве-

личивает вероятность несанкционированной утечки личной информации пользователей. 

Появление облачных архитектур Интернета вещей привело к появлению ряда фундамен-

тальных требований к безопасности и конфиденциальности личности, местоположения и лич-
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ных привычек, для защиты целостности данных. Для создания безопасной облачной инфра-

структуры IoMT необходимо реализовать меры, обеспечивающие конфиденциальность вход-

ных, выходных данных и функциональности. Необходимо предпринять усилия для предотвра-

щения доступа злоумышленников к личным данным и эффективного противодействия атакам 

перехвата пакетов. 

Кроме того, обеспечение прямой и обратной безопасности критически важно, чтобы новые 

пользователи могли расшифровывать зашифрованные сообщения только при подключении 

к сети, в то время как отстраненные пользователи не должны иметь возможности расшифро-

вывать после ухода. Поэтому крайне важно определить стратегии и протоколы безопасности 

IoMT, а также предоставить пользователям возможность каждый раз выбирать предпочтитель-

ный вариант. 

Основная функция расширенного стандарта шифрования (AES) – гарантировать конфи-

денциальность, в то время как алгоритм RSA использовать для асимметричного шифрования, 

цифровых подписей и управления ключами. Стандарты безопасных хеш-функций (SHA) при-

меняются вместе с алгоритмом Диффи–Хеллмана и криптографией на эллиптических кривых 

для обеспечения конфиденциальности с помощью асимметричной криптографии. 

В последнее время разработчики программного обеспечения носимых устройств особенно 

интересуются механизмами безопасности комбинированного режима, поскольку он обеспечи-

вает как шифрование, так и аутентификацию, которые необходимы для компактных, встраи-

ваемых или портативных устройств. В настоящее время значительное внимание уделяется  

оптимизации шифров, и алгоритмы шифрования тщательно изучаются с учетом ресурсов,  

доступных на различных устройствах IoMT. 

Интероперабельность 

Способность интегрировать данные и использовать их вместе с другими формами данных 

повышает интероперабельность, имеющую решающее значение для использования преиму-

ществ новых и больших наборов данных, полученных с помощью носимых устройств. 

И наоборот, низкий уровень интероперабельности препятствует интеграции данных носимых 

устройств с другими данными, связанными со здоровьем, затрудняя сравнение и оценку  

результатов, полученных с различных устройств и датчиков альтернативными методами.  

Таким образом, обеспечение интероперабельности данных носимых устройств на программ-

ном и аппаратном уровнях может облегчить сравнение результатов, полученных альтернатив-

ными методами, и оценить потенциальные расхождения. Например, интеграция носимых 

устройств в медицинские услуги сопряжена с трудностями из-за необходимости привлечения 

и обучения дополнительного IT-персонала, поскольку конфигурации программного и аппа-

ратного обеспечения различаются. Кроме того, стандарты совместимости играют жизненно 

важную роль в управлении данными, позволяя интегрировать носимые устройства в медицин-

ские услуги. Например, данные. Полученные из носимых устройств мониторинга можно внед-

рить в электронные медицинские карты, устраняя риски кибербезопасности, способствуя про-

зрачности и отчетности в информационных системах здравоохранения. 

Ограничения по энергопотреблению, памяти и технологиям связи 

Основным ограничением носимых устройств является их энергопотребление, которое  

в основном обусловлено ограниченным временем автономной работы. Для облачных вычис-

лений, в случае приложений МО, физиологические данные, собранные датчиками устройства, 

передаются в облако, что значительно влияет на энергопотребление. Для носимых устройств 

многие элементы, включая электронную плату, операционную систему и другое программное 

обеспечение, компоненты биосенсоров с различными частотами дискретизации, объем дан-

ных, передаваемых по каналу связи, скорость регистрации данных на устройстве и дисплее 

носимого устройства, отрицательно влияют на энергопотребление. В связи с этим предлага-

ются схемы, направленные на оптимизацию энергопотребления компонентами [Хар24, Ели23, 
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Мах23]. Считается, что отправка и получение данных потребляют больше энергии, чем изме-

рения и регистрация информации. Сокращение объема данных, хранящихся и отправляемых 

в облако, является потенциальной стратегией снижения энергопотребления. Текущая вычис-

лительная мощность и время автономной работы носимых устройств могут ограничивать ис-

пользование передовых алгоритмов МО.   

Возможность внедрения приложения МО на носимом устройстве зависит от различных 

факторов, таких как сложность модели, которая включает количество параметров и слоев, раз-

меры устройства, объем данных и используемый вид обработки (пакетная или обработка  

в реальном времени). Небольшие размеры и вес современных носимых устройств делают их 

также ограниченными по объёму памяти. Из-за количества параметров и слоёв в модели, вы-

сокоточная модель требует больше памяти, чем модель с низкой точностью. В носимых 

устройствах IoMT для обеспечения короткого времени загрузки и устойчивого восстановле-

ния системы при внезапном отключении используется энергонезависимая память (например, 

F-RAM, MRAM, EEPROM и флэш-память). В зависимости от конкретного применения МО 

размер памяти некоторых моделей может превышать 100 МБ или даже гигабайт, особенно те, 

которые включают в себя входные данные изображений. Эти модели могут оказаться несов-

местимыми с носимыми устройствами из-за ограничений памяти, необходимой для выполне-

ния вычислений. 

В случае модели периферийных вычислений для связи между носимым устройством  

и периферийным устройством может использоваться один из стандартов UWB, NFC, RFID, 

Zigbee или Bluetooth. Облегченная технология Bluetooth обычно предпочтительна из-за ее  

более низкого энергопотребления, однако спецификация Bluetooth 5 допускает до семи под-

ключений к устройству. При их одновременном подключении каналов производительность 

может снизиться, возникнут проблемы с сопряжением при установлении нескольких подклю-

чений к смартфону. 

Выбор технологии связи зависит от различных факторов, таких как скорость передачи дан-

ных, необходимая для носимого устройства, максимальное расстояние между носимым 

устройством и устройством, а также требования к задержке сигнала. 

ЗАКЛЮЧЕНИЕ 

Носимые медицинские устройства играют важную роль в получении высокоточных био-

сигналов, которые необходимы для реализации цифровой медицины. Для достижения цели 

успешного лечения пациентов решающее значение имеет использование носимых устройств, 

которые фиксируют непрерывный поток клинических показателей жизнедеятельности чело-

века. Кроме того, ИИ должен быть реализован для распознавания тенденций и маркеров,  

которые могут указывать на изменения в базовой физиологии или на начало заболевания. 

В статье представлен анализ способов использования носимых устройств в здравоохранении 

и применения методов искусственного интеллекта для сбора и анализа поступающей на них 

информации.  

Представлен углубленный анализ сильных и слабых сторон использования машинного 

обучения в здравоохранении. Методы, предложенные в исследованиях, сложно сравнивать  

из-за различных наборов данных и различных целей исследований. Тем не менее, наиболее 

перспективным алгоритмом для приложений ЭКГ является архитектура глубокого обучения 

CNN, однако широко используются также метод опорных векторов SVM и метод деревьев  

решений. Рассмотрены проблемы и ограничения использования МО в носимых медицинских 

устройствах, связанные с надежностью и доступностью данных, выбором модели машинного 

обучения, безопасностью и конфиденциальностью данных пациентов, ограничениями, связан-

ными с энергопотреблением, объемами памяти и технологиями связи носимых устройств. 
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Title:  Challenges of implementing machine learning algorithms 
in intelligent wearable medical monitoring devices. 
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Аннотация:  Проведена классификация носимых медицин-
ских устройств для мониторинга состояния пациентов. Под-
черкнуты особенности использования алгоритмов машин-
ного обучения для носимых устройств в целях диагностики 
заболеваний, фиксации приступов, обнаружения аритмии, 
падений, стресса, распознавания физической и эмоциональ-
ной активности, назначения реабилитации. Рассмотрены ме-
тоды машинного обучения в частном случае применения но-
симого устройства для наблюдения сердечной аритмии па-
циента. Проведен анализ исследований, в которых в качестве 
алгоритмов машинного обучения использовались метод 
опорных векторов и метод случайного леса для классифика-
ции аритмии. Рассмотрены работы, в которых используются 
подходы глубокого обучения для неструктурированных дан-
ных, в частности, архитектура сверточной нейронной сети 
для классификации аритмии и фибрилляции предсердий. 
Выявлены проблемы и ограничения использования машин-
ного обучения в носимых устройствах. Предложены опти-
мальные решения проблем, связанных с надежностью и до-
ступностью данных, выбором модели машинного обучения, 
безопасностью и конфиденциальностью данных пациентов, 
энергопотреблением и ограниченными объемами памяти 
носимых устройств. 

Abstract:  A classification of wearable medical devices for patient 
monitoring is presented. The article highlights the specific appli-
cations of machine learning algorithms for wearable devices for 
diagnosing diseases, recording seizures, detecting arrhythmia, 
falls, and stress, recognizing physical and emotional activity, and 
prescribing rehabilitation. Machine learning methods are consid-
ered in the specific case of using a wearable device to monitor 
a patient's cardiac arrhythmia. An analysis of studies using sup-
port vector machines and random forests for arrhythmia classifi-
cation is conducted. Works that utilize deep learning approaches 
for unstructured data are considered, in particular, a convolu-
tional neural network architecture for classifying arrhythmia and 
atrial fibrillation. The problems and limitations of using machine 
learning in wearable devices are identified. Optimal solutions are 
proposed for problems related to data reliability and availability, 
machine learning model selection, patient data security and pri-
vacy, power consumption, and limited memory capacity of wear-
able devices. 
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