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Рассматривается подход к обеспечению уклонения мобильного робота от столкновения с препятствиями при движении 

вдоль заданного пути. Задача локальной оптимизации траектории формулируется с учетом необходимости следовать 

заданному пути и находиться на безопасном расстоянии от препятствий. Основная сложность при этом связана с необ-

ходимостью представить опасность столкновения в виде непрерывно дифференцируемой функции от положения робота 

на заданной карте. В литературе такая функция задается либо через аппроксимацию препятствий простыми геометри-

ческими формами, либо с помощью вычислительно емких нейросетевых моделей. Предлагается иной подход, основан-

ный на использовании низкоресурсного алгоритма классического обучения, способного быстро обучиться на аппрок-

симацию заданной карты препятствий. Суть подхода состоит в аппроксимации функции опасности столкновений на ос-

нове полиномиальной регрессионной модели. Разработанный метод реализован с использованием численного солвера 

Acados для решения задач оптимального управления. Сравнительные эксперименты показали, что использование поли-

номиальной модели 12-й степени обеспечивает повышение качества планирования траекторий. Суммарное время обу-

чения и оптимизации траектории составляет несколько десятков миллисекунд, что удовлетворяет стандартному требо-

ванию для бортовых систем – возможности перепланирования с частотой не менее 10 Гц 
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ВВЕДЕНИЕ  

Выбор траектории играет важную роль при управлении робототехническими системами 

различных типов: промышленными роботами [Пуш24, Ору24, Мир24а–Мир25в], колесными 

мобильными платформами [Нас24, Мир23, Мир23б, Мур24, Mir24], беспилотными летатель-

ными аппаратами [Гур24, Мус24, Хал25] и др. Эта задача имеет много аспектов – технических, 

архитектурных, методологических, этических [Gay17, Мир23, Вох23, Beh25]. 

Возможность самостоятельного планирования движения мобильного робота является обя-

зательным условием его автономного функционирования. В современных робототехнических 

системах планирование как правило выполняется в два этапа. Сначала производится глобаль-

ное планирование. Задача глобального планирования состоит в том, чтобы на основе извест-

ных начальной и конечной конфигураций робота, а также карты препятствий, составить  

последовательность промежуточных положений, перемещаясь по отрезкам, между которыми 

робот может достичь конечного положения. Эта задача успешно решается с использованием 

эвристического [Har68] или вероятностного [Kav96, LaV01] поиска.  

После того как спланирован глобальный путь, выполняется второй этап – локальное пла-

нирование, в ходе которого глобальный путь преобразуется в локальную траекторию, учиты-

вающую кинодинамические ограничения мобильного робота. Локальная траектория часто 

строится непосредственно в ходе движения робота, в режиме скользящего окна. Это позволяет 
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учесть при планировании данные о реальном положении препятствий, поступающие от сенсо-

ров в реальном времени. Задача локального планирования часто решается вероятностными 

[Wil16] или численными [Sch20] методами оптимального управления. Численные методы 

обеспечивают более надежные решения, но требуют, чтобы задача оптимизации была сфор-

мулирована в виде конкретной системы уравнений. Вероятностные методы не предъявляют 

такого требования, однако могут давать некорректные или осциллирующие решения. 

В данной работе рассматривается подход к уклонению от препятствий при решении задачи 

локального планирования численными методами. Такое уклонение может быть реализовано 

двумя способами: либо в постановку задачи добавляется система ограничений-неравенств, 

обеспечивающих отсутствие столкновений [Sch20], либо в функцию стоимости добавляется 

дополнительное слагаемое (репульсивный потенциал препятствий), содержащее оценку опас-

ности столкновения с препятствиями [Алх23]. Второй подход обеспечивает более гибкое 

уклонение от столкновений и может сходится к корректному решению, даже если глобальный 

план задевает препятствия. Сложность этого подхода в том, что функция опасности столкно-

вений должна быть непрерывно-дифференцируемой на всей карте: ее градиент используются, 

чтобы «выталкивать» траекторию из опасных областей. 

Можно выделить два представленных в литературе подхода к заданию функции отталки-

вающего потенциала: аппроксимацию карты препятствий набором простых геометрических 

форм, и оценка потенциала с помощью обучаемых моделей. Первый подход рассматривается 

в ряде работ: в [Sch20] используется аппроксимация свободного пространства кругами, 

в [Sch20b] – аппроксимация свободного пространства квадратами, в [Алх23] – аппроксимация 

препятствий кругами, в [Zie14] – аппроксимация границ препятствий ломаной, в [Log25] – 

аппроксимация препятствий выпуклыми многоугольниками. Минусом такого подхода явля-

ется сложность учета препятствий на карте произвольной формы.  

При использовании второго подхода опасность столкновения оценивается нейросетевой 

моделью. В ранних работах [Ada22, Kur22] нейросетевая модель предобучалась на одну задан-

ную карту и работала только в ее пределах. В последующих работах [Alh24, Jac24] обученная 

нейросетевая модель принимает на вход актуальные данные от препятствий и, таким образом, 

может использоваться в различных средах. Такая модель становится достаточно ресурсоемкой 

и время вычисления на ней может составлять сотни миллисекунд при том, что стандартным 

требованием для автономных транспортных средств является возможность перепланирования 

с частотой 10 Гц. Процедура обучения нейросети на отдельную карту в свою очередь является 

весьма ресурсоемкой процедурой, которая не может осуществляться в реальном времени при 

каждом перепланировании. 

Мы предлагаем метод аппроксимации препятствий легкой обучаемой моделью, которая 

может настроиться на заданную карту в течение короткого времени. Это позволяет выполнить 

как обучение модели, так и оптимизацию траектории в рамках одной операции перепланиро-

вания траектории, выполнения в реальном времени. В качестве модели используется полино-

миальная регрессионная модель заданной степени. Далее приводится математическая поста-

новка задачи локальной оптимизации траектории, описывается предложенный подход, описы-

ваются особенности реализации и результаты вычислительных экспериментов.  

УПРАВЛЕНИЕ ДВИЖЕНИЕМ ПО ТРАЕКТОРИИ 

Формальная постановка задачи оптимизации траектории. Рассмотрим задачу MPC – 

Model Predictive Control (метод управления, при котором используется математическая модель 

системы для прогнозирования её будущего поведения на определённом горизонте предсказа-

ния) для нелинейной системы с непрерывной динамикой и кусочно-постоянным управлением: 

 {𝑥opt[𝑖], 𝑦opt[𝑖]}𝑖=𝑘
𝑘+𝑚 = arg( min

𝑥,𝑢,𝑝
∑ 𝐽(𝑥[𝑖], 𝑦[𝑖], 𝑝[𝑖]))𝑘+𝑚

𝑖=𝑘 , (1) 

 
𝑑𝑥𝜇[𝑖]

𝑑𝑡
= 𝑓𝜇(𝑥[𝑖], 𝑢[𝑖], 𝑝[𝑖]). (2) 
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Оптимизируемый процесс управления состоит из m шагов, на каждом из которых произ-

водится переключение управляющих воздействий. Пусть x[i] – μ-мерный вектор переменных, 

описывающих состояние объекта управления в начале [i]-го шага; u[i] – ν-мерный вектор 

управляющих воздействий, непрерывно прилагаемых к объекту управления в течение [i]-го 

шага; p[i] – κ-мерный вектор параметров процесса, используемых в расчетах для [i]-го шага. 

Выражение (1) задает функцию стоимости J, складывающуюся из значений J[i], рассчитанных 

по единому алгоритму для каждого шага. Суть оптимизации в том, чтобы подобрать значения 

управляющих воздействий, обеспечивающих минимальное значение J. Выражение (2) задает 

непрерывную модель динамики процесса (для каждой переменной состояния – зависимость ее 

производной от остальных состояний, управляемых переменных и параметров процесса в лю-

бой момент времени). Для дискретной динамики уравнение (2) примет несколько другой вид: 

 𝑥𝜇[𝑖 + 1] = 𝑓𝜇(𝑥[𝑖], 𝑢[𝑖], 𝑝[𝑖]). (3) 

Процедура оптимизации начинается с начального приближения {𝑥init[𝑖], 𝑢init[𝑖]}𝑖=𝑘
𝑘+𝑚, кото-

рое может не удовлетворять модели динамики (в нашем случае значения xinit берутся из гло-

бального плана, построенного алгоритмом Theta*, а uinit заполняются нулями). На каждой ите-

рации оптимизации солвер смещает текущую траекторию (на первом шаге траектория равна 

начальному приближению, на каждом следующем – результату предыдущей итерации) так, 

чтобы снизить значение функции стоимости J, при этом удовлетворяя модели динамики 

и ограничениям. 

Модель динамики для колесного робота. Вектор состояний включает координаты колес-

ного робота и его ориентацию, также в зависимости от модели динамики он может включать 

линейную и угловую скорости, угол поворота рулевых колес и т. д. Вектор управляющих воз-

действий в зависимости от модели может включать линейные и угловые скорости и ускорения 

колесного робота, скорость поворота рулевого колеса и т. д. Например, можно указать модель 

с дифференциальным приводом (повороты платформы обеспечиваются вращением левых 

и правых колес с разной скоростью; дифференциальный привод имеет используемый в лабо-

раторных экспериментах мобильный робот Husky) и велосипедную модель (описывает транс-

портные средства с рулевыми колесами, в т.ч. автомобили). Для велосипедной модели вектор 

состояний x = (x, y, v, θ, δ)T, где x, y –координаты транспортного средства, v – линейная ско-

рость, θ – направление движения транспортного средства, δ – угол поворота рулевых колес. 

Вектор управлений u = (a, ω)T, где a – линейное ускорение, ω – скорость поворота рулевых 

колес. Выражение (2) принимает следующий вид: 

 
𝑑𝑥

𝑑𝑡
= 𝜐 cos 𝜃 ,    

𝑑𝑦

𝑑𝑡
= 𝜐 sin 𝜃,    

𝑑𝜐

𝑑𝑡
= 𝑎,    

𝑑𝜃

𝑑𝑡
=

𝜐 tan 𝛿

𝐿
,    

𝑑𝛿

𝑑𝑡
= 𝜔, (3) 

где L = const – расстояние между осями колесного робота. 

Модель с дифференциальным приводом: 

 
𝑑𝑥

𝑑𝑡
= 𝜐 cos 𝜃 ,   

𝑑𝑦

𝑑𝑡
= 𝜐 sin 𝜃,   

𝑑𝜐

𝑑𝑡
= 𝑎,   

𝑑𝜃

𝑑𝑡
= 𝜔. (4) 

В отличие от предыдущей модели здесь ω – это угловая скорость всей платформы. 

Функция стоимости. Рассмотрим функцию стоимости в задаче оптимизации, определяю-

щую степень оптимальности для заданного положения робота при движении по траектории: 

 𝐽[𝑖] = 𝐽𝑠(𝑥[𝑖], 𝑢[𝑖], 𝑥𝑟[𝑖]) + 𝐽𝑜(𝑥[𝑖], 𝑝𝑜[𝑖]) (5) 

Минимизация слагаемого Js (гравитационный потенциал) обеспечивает близость положе-

ния робота к референтному значению xr, взятому из глобального плана, в то время как мини-

мизация слагаемого Jo (репульсивный потенциал препятствий) обеспечивает отталкивание 

траектории на безопасное расстояние от препятствий. Вектор po[i] содержит параметры, опи-

сывающие препятствия. Вектор параметров задачи из системы (1) в этом случае определяется 

как p[i] = ((xr[i])
T , (po[i])

T )T . 
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 𝐽𝑠[𝑖] = ∑ 𝑤𝑥𝑗(𝑥𝑗[𝑖] − 𝑥𝑗(ref)[𝑖])2 + ∑ 𝑤𝑢𝑘𝑢𝑘
2[𝑖]𝑣

𝑘=1
𝜇
𝑗=1  (6) 

Здесь wxj, wuk весовые коэффициенты соответствующих слагаемых, xj(ref)[i] – референсные 

значения (берутся с глобального плана движения в виде ломаной). 

Репульсивный потенциал должен принимать высокие значения внутри препятствий, низ-

кие вдали от препятствий, а у границы препятствий должен иметь максимальный градиент 

(в ходе процедуры оптимизации градиент определяет направление, в котором оптимизатор 

«выталкивает» траекторию подальше от препятствий). 

Пусть известна бинарная карта препятствий (Occupancy Grid, OG – плоскость, в которой 

движется робот, расчерчена на клетки-ячейки, каждая ячейка помечается как занятая или сво-

бодная). На основе этой карты для любой точки можно алгоритмически рассчитать так назы-

ваемую функцию расстояния со знаком (Signed Distance Function, SDF) – она равна расстоя-

нию до ближайшей границы препятствия со знаком плюс (если точка вне препятствия) или 

минус (если точка внутри препятствия). На основе OG и SDF строится Signed Distance Map – 

матрица той же размерности, что OG, в каждой ячейке которой указывается значение SDF. 

Значения потенциала можно рассчитать, как сигмоидную функцию от SDF. Пример для 

логистической функции: 

 𝐽𝑜 = 𝑤1(1 − (1 + 𝑒−(SDF−𝑠0))−𝑤2. (7) 

Здесь используются весовые коэффициенты: w1, w2, s0 – сдвиг сигмоиды по оси абсцисс. 

Функция расчета репульсивного потенциала от SDF удовлетворяет требованиям, сформу-

лированным выше: потенциал принимает высокие значения внутри препятствий, низкие вдали 

от препятствий, а у границы препятствий имеет максимальный градиент. Проблема в том, что 

SDF сама по себе не является дифференцируемой функцией. Она рассчитывается алгоритми-

чески, ее значения можно подсчитать в любой точке, но задать ее аналитический градиент 

в общем случае нельзя. 

РЕГРЕССИОННАЯ МОДЕЛЬ 

Предлагается использовать модель полиномиальной регрессии для аппроксимации карты 

знаковых расстояний (Signed Distance Map, SDM). Исходными признаками являются две неза-

висимые переменные, x1 и x2 (в нашем случае координаты на карте). Модель строится путем 

преобразования исходного пространства признаков в расширенное, включающее все полино-

миальные комбинации x1 и x2 вплоть до заданной степени n. Для двух признаков это преобра-

зование генерирует (n + 1)(n + 2)/2 уникальных членов. Это связано с тем, что одночленов 

суммарной степени n ровно n + 1, и при этом также учитываются меньшие степени.  

Полученная модель остается линейной относительно своих параметров, что обеспечивает 

возможность эффективной процедуры обучения методом наименьших квадратов, временная 

сложность которого равна O(whn4), где w и h – ширина и высота карты в пикселях соответ-

ственно. Результат обучения модели представляет собой полином вида  

 𝑦̂ = 𝑡[0] + 𝑡[1]𝑥1 + 𝑡[2]𝑥2 + 𝑡[3]𝑥1
2 + 𝑡[4]𝑥1𝑥2 + ⋯. (8) 

Идея метода состоит в поиске вектора весовых коэффициентов (в нашем обозначении t), 

которые при подстановке в полином минимизировали бы квадратичное отклонение от эталон-

ных значений: 

 𝑡 = arg( min
𝑙

||𝑋𝑙 − 𝑦||2
2), (9) 

где X – матрица, состоящая из строк вида  

 𝑋𝑘 = (1, 𝑥1𝑖 , 𝑥2𝑗 , 𝑥1𝑖
2 , 𝑥1𝑖𝑥2𝑖 , 𝑥2𝑗

2 , . . . ). (10) 

В свою очередь, y – векторизация матрицы значений SDF из SDM: 

 𝑦 = (SDM[1,1], SDM[1,2], . . . , SDM[2,1], . . . , SDM[ℎ, 𝑤])𝑇, (11) 

где i-я строка матрицы X должна соответствовать i-му элементу y по индексам. 
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Весовые коэффициенты находятся следующим образом: 

 𝑡 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦. (12) 

Мы используем метод полиномиальной регрессии для аппроксимации SDF, после чего 

обученная модель используется для решения задачи локальной оптимизации траектории. 

Вектор параметров о препятствиях pо в данном подходе состоит из значений весовых  

коэффициентов t. 

ЭКСПЕРИМЕНТЫ  

Реализация алгоритмов. Алгоритмы были реализованы на языке программирования 

Python. Для формирования карт знаковых расстояний (Signed Distance Map, SDM) использо-

валась специализированная библиотека scikit-fmm1. Аппроксимация полученных значений 

SDF выполнялась с помощью библиотеки scikit-learn (полиномиальная регрессия, реализован-

ная как комбинация преобразования полиномиальных признаков и линейной регрессии).  

Построенная регрессионная модель уже участвовала в формулировке и решении задачи  

локальной оптимизации траектории, для которой использовался решатель Acados2 через его 

Python-интерфейс. 

Интеграция модели, построенной средствами scikit-learn, в задачу Acados потребовала ее 

символьного представления. Это было достигнуто путем извлечения коэффициентов поли-

нома из обученной модели и явного формирования полиномиальной функции с использова-

нием символьных переменных (с помощью символьного фреймворка CasADi3). 

Бейзлайны. Сравнение предложенного метода проводилось с двумя другими подходами 

к решению данной задачи. Первый из них отличается от предложенного нами лишь тем, что 

аппроксимация карты знаковых расстояний производится с помощью символьного фрейм-

ворка CasADi. Второй подход (CIAO star [5]) не использует дополнительное слагаемое репуль-

сивного потенциала и подразумевает добавление нелинейного ограничения-неравенства 

о нахождении робота внутри безопасного круга для каждой точки пути. 

Результаты. Приведем пример работы обученной модели при 18 степени полинома – 

сформированное потенциальное поле для одной из карт размером 64 на 64 пикселя. На изоб-

ражении (рис. 1) справа представлен необработанный файл карты, слева график, где цветовым 

градиентом (по возрастанию от фиолетового к жёлтому) отображены значения репульсивного 

потенциала. На карте строится траектория движения робота (красная линия) по заданной  

ломаной (синяя линия) (рис. 2). Она также построена с помощью полиномиальной регрессии. 

Следует заметить, что тестирование проводилось на картах с ресурса Moving AI Lab4 со сто-

роной пикселя, соответствующей 0,5 м.  

  

 
 

Рис. 1. Потенциальное поле Рис. 2. Траектория движения робота 

 

 
1 URL: https://github.com/scikit-fmm/scikit-fmm  
2 URL: https://docs.acados.org   
3 URL: https://web.casadi.org  
4 URL: https://movingai.com/benchmarks/grids.html  

https://github.com/scikit-fmm/scikit-fmm
https://docs.acados.org/
https://web.casadi.org/
https://movingai.com/benchmarks/grids.html
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После наглядного примера перейдём к числовым данным. Начнём с времени обучения  

модели (или аналогичного процесса) при аппроксимации значений SDF. Здесь и далее σ – 

среднее квадратичное отклонение (табл. 1–3). 

Обучение модели для аппроксимации с помощью предложенного метода сопоставимо 

по времени с интерполяцией CasADi при 12-й степени полинома, но медленнее предобработки 

карты и догадки методом CIAO star. 
Таблица 1  

Обучение модели для аппроксимации SDF  

(размер карты 6464, средние значения на 5 картах) 

Метод  

аппроксимации 

Среднее время  

обучения модели, сек 
σ, пикс. 

Sklearn- 

регрессия,  

полином  

степени: 

6 0.0122 2.87 

9 0.0177 1.04 

12 0.0334 0.41 

15 0.0950 0.22 

18 0.1276 0.17 

21 0.1488 0.14 

Casadi interpolant 0.0355 — 

CIAO star  

(безопасные круги) 
0.0071 — 

Таблица 2 

Обучение модели для аппроксимации SDF  

(размер карты 128128, средние значения на 5 картах) 

Метод  

аппроксимации 

Среднее время  

обучения модели, сек 
σ, пикс. 

Sklearn- 

регрессия,  

полином  

степени: 

6 0.042 11.01 

9 0.121 4.27 

12 0.228 2.06 

15 0.338 1.05 

18 0.537 0.79 

21 0.643 0.70 

Casadi interpolant 0.242 — 

CIAO star  

(безопасные круги) 
0.023 — 

Таблица 3 

Обучение модели для аппроксимации SDF  

(размер карты 256256, средние значения на 5 картах) 

Метод  

аппроксимации 

Среднее время  

обучения модели, сек 
σ, пикс. 

Sklearn- 

регрессия,  

полином  

степени: 

6 0.226 58.0 

9 0.513 26.0 

12 1.058 13.4 

15 1.830 7.3 

18 2.368 5.4 

21 2.922 4.7 

Casadi interpolant 1.822 — 

CIAO star  

(безопасные круги) 
0.071 — 
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Теперь перейдём к рассмотрению данных, полученных при построении траекторий 

(а именно при последовательной оптимизации небольших горизонтов). Для оценки качества 

также рассчитывается минимальное расстояние до препятствия на всей длине пути. Они 

по аналогии представлены на разных размерах карт (табл. 4–6). 

Таблица 4 

Локальная оптимизация траектории с помощью готовой модели  

(размер карты 6464, средние значения на 5 картах) 

Метод  

аппроксимации 

Среднее время  

решения горизонта, сек 

Минимальное расстояние 

до препятствия по пути, пикс. 

Sklearn- 

регрессия,  

полином  

степени: 

6 0.0024 –3.22 

9 0.0025 –0.50 

12 0.0026 0.97 

15 0.0026 1.45 

18 0.0027 1.45 

21 0.0027 1.45 

Casadi interpolant 0.0028 1.95 

CIAO star  

(безопасные круги) 
0.0025 –1.06 

Таблица 5 

Локальная оптимизация траектории с помощью готовой модели  

(размер карты 128128, средние значения на 5 картах) 

Метод  

аппроксимации 

Среднее время  

решения горизонта, сек 

Минимальное расстояние 

до препятствия по пути, пикс. 

Sklearn- 

регрессия,  

полином  

степени: 

6 0.0025 –1.45 

9 0.0026 –1.50 

12 0.0026 –1.30 

15 0.0026 –0.35 

18 0.0028 –0.35 

21 0.0028 –0.35 

Casadi interpolant 0.0026 1.76 

CIAO star  

(безопасные круги) 
0.0040 –0.50 

Таблица 6 

Локальная оптимизация траектории с помощью готовой модели  

(размер карты 256256, средние значения на 5 картах) 

Метод  

аппроксимации 

Среднее время решения 

горизонта, сек 

Минимальное расстояние 

до препятствия по пути, пикс. 

Sklearn- 

регрессия,  

полином  

степени: 

6 0.0026 –4.4 

9 0.0029 –4.4 

12 0.0032 –4.4 

15 0.0031 –2.2 

18 0.0032 –1.5 

21 0.0033 –1.1 

Casadi interpolant 0.0033 2.3 

CIAO star  

(безопасные круги) 
0.0056 –1.9 
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Решения, использующие регрессионную модель, часто более выгодны по времени на ста-

дии локальной оптимизации траектории, чем метод, применяющий интерполяцию из CasADi, 

но менее выгодны, чем метод CIAO star. 

ЗАКЛЮЧЕНИЕ  

В ходе исследования были разработаны модели полиномиальной регрессии при решении 

задач локальной оптимизации траектории. Было установлено, что применение этих моделей 

обычно дает корректные результаты аппроксимации SDF и оптимизации траектории на картах 

размером 6464 при степени полинома от 12-й включительно, однако, начиная со степени 15, 

данный подход проигрывает во времени обучения. Несмотря на возникающий вопрос точно-

сти аппроксимации SDF, при небольших размерах карт и степенях полинома порядка 12,  

использование регрессии sklearn может быть оправдано. 
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МЕТАДАННЫЕ  |  METADATA  

Заглавие:   Регрессионная модель дифференцируемой 
оценки опасности столкновения мобильного робота с пре-
пятствием. 

Title:  Regression model for differentiable assessment of the 
danger of collision of a mobile robot with an obstacle. 

Авторы:   Фаттахов А. Р., Инсапов К.И., Миронов К. В.  Authors:  Fattakhov A. R., Insapov K. I., Mironov K. V. 

Аннотация:  Рассматривается подход к обеспечению уклоне-
ния мобильного робота от столкновения с препятствиями 
при движении вдоль заданного пути. Задача локальной опти-
мизации траектории формулируется с учетом необходимо-
сти следовать заданному пути и находиться на безопасном 
расстоянии от препятствий. Основная сложность при этом 
связана с необходимостью представить опасность столкнове-
ния в виде непрерывно дифференцируемой функции от по-
ложения робота на заданной карте. В литературе такая функ-
ция задается либо через аппроксимацию препятствий про-
стыми геометрическими формами, либо с помощью вычис-
лительно емких нейросетевых моделей. Предлагается иной 
подход, основанный на использовании низкоресурсного ал-
горитма классического обучения, способного быстро обу-
читься на аппроксимацию заданной карты препятствий. Суть 
подхода состоит в аппроксимации функции опасности столк-
новений на основе полиномиальной регрессионной модели. 
Разработанный метод реализован с использованием числен-
ного солвера Acados для решения задач оптимального управ-
ления. Сравнительные эксперименты показали, что исполь-
зование полиномиальной модели 12-й степени обеспечи-
вает повышение качества планирования траекторий. Сум-
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стандартному требованию для бортовых систем – возможно-
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Abstract:  This paper considers an approach to ensuring obstacle 
avoidance for a mobile robot moving along a given path. The lo-
cal trajectory optimization problem is formulated taking into ac-
count the need to follow the given path and maintain a safe dis-
tance from obstacles. The main difficulty with this approach is 
the need to represent the collision hazard as a continuously dif-
ferentiable function of the robot's position on a given map. 
In the literature, such a function is defined either by approximat-
ing obstacles with simple geometric shapes or using computa-
tionally intensive neural network models. This paper proposes 
a different approach based on the use of a low-resource classical 
learning algorithm capable of quickly learning to approximate 
a given obstacle map. The essence of this approach is to approx-
imate the collision hazard function using a polynomial regression 
model. The developed method is implemented using the Acados 
numerical solver for solving optimal control problems. Compara-
tive experiments have shown that the use of a 12th-degree pol-
ynomial model improves the quality of trajectory planning. 
The total time for training and trajectory optimization is several 
tens of milliseconds, which satisfies the standard requirement for 
onboard systems – to provide the ability to re-plan with a fre-
quency of at least 10 Hz. 
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