

 2020. Т. 2, № 1 (3). С. 5–10 http://siit.ugatu.su

ISSN 2686‐7044 (Online)СИИТ
СИСТЕМНАЯ ИНЖЕНЕРИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

ISSN 2658‐5014 (Print)

УДК 004.65

System Level Formal Verification as a Service

T. Mancini1, F. Mari2, A. Massini3, I. Melatti 4, E. Tronci5

1tmancini@di.uniroma1.it, 2mari@di.uniroma1.it, 3massini@di.uniroma1.it, 4melatti@di.uniroma1.it,
5tronci@di.uniroma1.it

Computer Science Department Sapienza University Rome, Italy

Поступила в редакцию 18 июня 2020 г.

Abstract. We present SyLVaaS, a Web‐based tool enabling Verification as a Service (VaaS) of
Cyber‐Physical Systems (CPS). SyLVaaS takes as input a high‐level model defining the System
Under Verification (SUV) operational environment and computes, using parallel algorithms
deployed in a cluster infrastructure, a set of highly optimised simulation campaigns, which can be
executed in an embarrassingly parallel fashion on a set of Simulink instances, each one defining a
copy of the SUV model. As the actual simulation is carried out at the user premises (e.g., in a
private cluster), SyLVaaS allows full Intellectual Property protection on the SUV model and the
user verification flow. SyLVaaS randomises the verification order of operational scenarios, thus
enabling anytime estimation of completion time and computation of Omission Probability, i.e., the
probability that there is a yet‐to‐be‐simulated operational scenario violating the property under
verification. This information supports graceful degradation in the verification activity.

Keywords: modelled, system, methodology, simulation campaigns.

 INTRODUCTION

In this paper, we present SyLVaaS, a Web-
based tool enabling Verification as a Service
(VaaS) of Cyber-Physical Systems (CPS).
SyLVaaS takes as input a high-level model
defining the System Under Verification (SUV)
operational environment and computes, using
parallel algorithms deployed in a cluster
infrastructure, a set of highly optimised
simulation campaigns, which can be executed in
an embarrassingly parallel fashion on a set of
Simulink instances, each one defining a copy of
the SUV model. As the actual simulation is
carried out at the user premises (e.g., in a private
cluster), SyLVaaS allows full Intellectual
Property protection on the SUV model and the

user verification flow. SyLVaaS randomises the
verification order of operational scenarios, thus
enablinganytime estimation of completion time
and computation of Omission Probability, i.e.,
the probability that there is a yet-to-be-
simulated operational scenario violating the
property under verification. This information
supports graceful degradation in the verification
activity. Cyber-Physical Systems (CPSs) consist
of hardware and software components and can
be modelled as hybrid systems (see, e.g., [1] and
citations thereof). System Level Verification of
CPSs has the goal of verifying that the whole
(i.e., software + hardware) system meets the
given specifications. Model checkers for hybrid
systems cannot handle System Level Formal
Verification (SLFV) of actual CPSs. Thus,

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ 6

Hardware In the Loop Simulation (HILS) is
currently the main workhorse for system level
verification and is supported by Model Based
Design tools like, for example, Simulink
(http://www.mathworks.com) and VisSim
(http://www.vissim.com). In HILS, the actual
software reads/sends values from/to
mathematical models (simulation) of the
physical systems (e.g., engines, analog circuits,
etc.) it will be interacting with.

MOTIVATIONS

System Level Formal Verification (SLFV)
is an exhaustive HILS, where all relevant
simulation scenarios are considered. In [24] a
methodology has been presented which allows
exhaustive HILS. Such methodology works as
follows. The System Under Verification (SUV)
is a Hybrid System (see, e.g., [1] and citations
thereof) whose inputs belong to a finite set of
uncontrollable events (disturbances), which
model failures in sensors or actuators,
variations in the system parameters, etc. The
SUV is a deterministic system (the typical case
for control systems). Nondeterministic
behaviours (such as faults) are modelled with
disturbances. Also, sequences of inputs to the
SUV are of bounded length, thus the problem
addressed is bounded SLFV. Accordingly, in
[2–4] a simulation scenario is a finite sequence
of disturbances. A system is expected to
withstand all disturbance sequences that may
arise in its operational environment.
Correctness of a system (defined in terms of
safety properties) is thus defined with respect to
such admissible disturbance sequences.

Given a high-level model (disturbance
model) defining the admissible disturbance
sequences (disturbance traces), the approach in
[2–4] works as follows: (i) generates the entire
set of disturbance traces, (ii) evenly splits such
set into k ∈ N+ slices in order to allow parallel
verification, (iii) computes (in parallel) an
optimised simulation campaign from each slice,
(iv) executes (in parallel) the generated
simulation campaigns on a set of k independent
simulators (e.g., Simulink instances). There, a
simulation campaign is a sequence of
simulation instructions, which exploits the

capabilities of modern simulators to save and
restore previously stored simulation states
(much as in explicit model checking). In
particular, a simulation campaign consists of
the following commands: save a simulation
state, restore a saved simulation state, inject a
disturbance, advance the simulation for a given
time length. As soon as one of the simulators
(running the simulation campaign
corresponding to a slice) finds an error, the
whole parallel simulation activity stops, and the
disturbance trace which triggered the error is
returned as a counterexample. Also, as the
generated optimised simulation campaigns (one
per slice) randomise the verification order of
the traces in the input slice, at anytime during
the parallel simulation activity it is possible to
compute an upper bound to the Omission
Probability (OP), i.e., the probability that an
error exists, but no error has been found so far,
and give a quite accurate estimation of the
completion time. Algorithms for all the
activities above have been presented in [2–4].
However, an off-the-shelf tool to effectively
support companies working in the CPS business
in their everyday SUV verification activities
was not available. To provide such a tool is the
purpose of [7] and of this paper.

MAIN CONTRIBUTIONS

We present SyLVaaS (see Figure 1), a Web-
based service computing the set of simulation
campaigns to be used for a SLFV task.
SyLVaaS introduces the new Verification as a
Service (VaaS) paradigm, allowing verification
engineers (SyLVaaS users) to compute the
simulation campaigns needed to their SLFV
activities keeping both the SUV model and the
property to be verified secret, thus achieving
full Intellectual Property (IP) protection. This is
mandatory for a VaaS service to be effective
and usable, as companies consider the design
effort (hence their SUV models) and their
verification flow as the core of their IP.

To enable IP protection, SyLVaaS takes as
input only a disturbance model, in terms of a
CMurphi [5] model describing the admissible
operational scenarios the SUV must withstand.
The actual verification activity is performed in
parallel at the user premises (e.g., in a private

7T . Mancin i , F . Mar i , A. Mass in i , I . Melat t i , E . Tronc i ●Sys tem Leve l Formal …

cluster) running an arbitrarily large set of
Simulink simulators, using the optimised
simulation campaigns computed by SyLVaaS
and plugging-in a Simulink driver
downloadable from the SyLVaaS Web site.

In case an error is found during verification,
a counterexample is generated. Such a
counterexample can then be used to correct the
SUV and to produce a new SUV model. At this
point a new SLFV activity can start. Note that,
given that the set of admissible operational
scenarios (hence: the disturbance model) has
not changed, there is no need to interact with
SyLVaaS again, as the previously computed
simulation campaigns can be reused. This
property also hides the verification flow of
SyLVaaS users.

The operational scenario generation
algorithm in [2] is a sequential algorithm,
taking about half an hour on their case study.
Although this time is negligible with respect to
the whole HILS activity (which can take weeks
of computation), it becomes a major bottleneck
in a VaaS context as the one provided by
SyLVaaS, as it is the most intensive part of the
computation carried out on the SyLVaaS side
(i.e., generation of optimised simulation
campaigns for parallel HILS, see Figure 1,
right). To achieve fast response time, we
discuss how we equipped SyLVaaS with a
parallel algorithm for the generation of
operational scenarios from a disturbance model,
whose distributed multi-core implementation
has been explicitly designed as to operate
efficiently in a cluster of possibly
heterogeneous machines.

Our parallel operational scenario generation
algorithm consists of an Orchestrator process
which governs the exploration of the (state
space of the finite state automaton defined by

the) disturbance model provided by the user,
splitting and delegating the work to a battery of
available Slaves, whose work load is
dynamically balanced. Slave processes are
independent from each other and communicate
only with the Orchestrator. This minimises
coordination overhead.

We show experimental results of our
parallel operational scenario generation
algorithm on two industry-scale case studies
(regarding the Fuel Control System (FCS) in
the Simulink distribution) consisting of,
respectively, 4,023,955 and 12,948,712
operational scenarios. Results show that our
parallel algorithm for operational scenario
generation scales well with the number of
slaves. As the operational scenario generation is
the most computationally intensive computation
within the SyLVaaS workflow, and given that
the other step performed by SyLVaaS
(computation of optimised simulation
campaigns) already exploits an embarrassingly
parallel algorithm (from [3]), the entire
SyLVaaS workflow now benefits from a cluster
of machines at the SyLVaaS cloud
infrastructure.

SYSTEM LEVEL FORMAL VERIFICATION

In this section, we describe SyLVaaS in
terms of input and output, and describe how to
use the system output.

INPUT

SyLVaaS requires two inputs:
 1. An integer k > 0 describing the number of
computational cores available on the user side
for parallel execution of simulation campaigns
(hence, for parallel verification);
2. A disturbance model defining the operational
environment, i.e., the set of disturbance traces
the System Under Verification (SUV) should
withstand, along with a bounded horizon h.

As it is typically infeasible for a verification
engineer to define a SUV operational
environment by explicitly listing all its
disturbance traces, SyLVaaS, along the lines of
[2], takes as input a disturbance model defining

Fig. 1. SyLVaaS VaaS architecture

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ 8

a Disturbance Generator (DG) written in the
high-level language accepted by the CMurphi
[5] model checker.

OUTPUT

From the value of k and the input
disturbance model, SyLVaaS produces k
simulation campaigns, which can be executed
in parallel at the user premises over k
independent simulators, in an embarrassingly
parallel fashion. Each simulation campaign
verifies, in a highly optimised way, a disjoint
and equally sized portion of the disturbance
traces entailed by the input disturbance model.
Conversely, all disturbance traces entailed by
the disturbance model are covered by exactly
one simulation campaign. This guarantees that
the System Level Formal Verification (SLFV)
process is both exhaustive (with respect to the
set of disturbance traces entailed by the
disturbance model) and non-redundant.

Furthermore, the verification order of the
disturbance traces covered by each simulation
campaign is randomised. This, according to [3]
enables the computation of an upper bound to
the Omission Probability (OP) at anytime
during the parallel simulation. The k simulation
campaigns are returned to the user via the Web
interface, together with an abstract Simulink
driver. Such a driver is a MATLAB script,
which reads and executes a SyLVaaS-generated
simulation campaign, by sending simulation
commands to Simulink. It is abstract, as it must
be plugged into the SUV Simulink model and
configured at the user premises (see Fig. 1).

WEB INTERFACE

The Web interface of SyLVaaS is hosted at
http://mclab. di.uniroma1.it/sylvaas. It consists
of four main pages: (i) a standard login page,
(ii) a user console page (accessible after login)
showing all current, pending, running and
completed user jobs, (iii) a page to create a new
job (providing the required input), (iv) a tools
page, where the generic driver can be
downloaded. Users can download the
simulation campaigns for each completed job
from their console page.

HOW TO USE SYLVAAS OUTPUT

Given the output downloaded by SyLVaaS,
the verification engineer, in order to actually
verify the SUV via exhaustive Hardware In the
Loop Simulation (HILS), customises and plugs
the abstract Simulink driver into the SUV
Simulink model. This task is very easy and
consists in properly filling the template files
received by SyLVaaS as part of the abstract
driver. Such files define: the SUV model, the
SUV property to be verified (as a monitor
module), the interface between the driver and
the SUV, and the mapping between each
disturbance (in the CMurphi disturbance model)
and its counterpart in the SUV model. At this
point, the k downloaded simulation campaigns
can be executed in parallel on k independent
simulators. Given the randomisation of the
verification order of the disturbance traces
within each simulation campaign, at anytime
during the simulation process, when values
done1, done2, .., donek (with donei ∈ [0, 1] for
all i) of the disturbance traces covered by each
simulation campaign have been verified
successfully (i.e., no error has been raised so
far), the Omission Probability (OP), i.e., the
probability that a future simulation command
raises an error, is upper bounded as shown in
[3].

EXPERIMENTS

In this section we experimentally evaluate
SyLVaaS. In particular we provide the
evaluation of our parallel disturbance
generation algorithm and of the cloud
deployment of the overall Verification as a
Service (VaaS) infrastructure.

SYLVAAS EXPERIMENTAL DEPLOYMENT

We deployed SyLVaaS on overall
17computational cores allocated to 5 different
machines. One core (on a machine equipped
with 2 Intel Xeon 2.83GHz CPUs and 8GB
RAM) is dedicated to Orchestrator processes,
while 16 cores evenly distributed in 4 identical
machines (each one equipped with 2 Intel Xeon

9T . Mancin i , F . Mar i , A. Mass in i , I . Melat t i , E . Tronc i ●Sys tem Leve l Formal …

2.27GHz CPUs and 24GB RAM) are dedicated
to Slave processes. The SyLVaaS web interface
application resides on a yet another host (a tiny
virtual machine), external to the cluster and
directly connected to the Internet.

CASE STUDY

We use the same case study of [6, 2- 4], i.e.,
the Fuel Control System (FCS) model included
in the Simulink distribution. The FCS has three
sensors subject to faults (disturbances). We
used two disturbance models for the FCS, D1
and D2. Model D1 (described in more detail in
[2]) has a horizon of h = 100 and defines
4,023,955 disturbance traces. Model D2 is
defined extending D1 with more complex
operational scenarios and defines 12,948,712
disturbance traces over a horizon of h = 200. A
detailed description of D1 and D2 (not relevant
for the evaluation of our experiments below)
can be downloaded from the SyLVaaS Web
site.

EXPERIMENTAL RESULTS

1. Parallel Disturbance Trace Generation:
Table 1 shows the time needed by SyLVaaS to
generate the disturbance traces entailed by D1
and D2, when using a varying number S of
parallel slaves. The level (depth) L to which the
Orchestrator bounds its search and triggers a
Slave has been fixed at h/2 after preliminary
experiments. The number of computation
bunches executed by the algorithm is 477,727
for disturbance model D1 and 1,681,594 for D2.

Table 1. Parallel generation of disturbance traces

#slave
s (S)

disturbance model
D1

disturbance model
D2

 time
(h:m:s)

speedup effic. time
(h:m:s)

speedu
p

effic.

1 0:32:32 1.00 100.00% 4:45:47 1.00 100.00%
8 0:5:32 5.88 73.50% 0:43:2 6.64 83.00%

16 0:3:11 10.22 63.88% 0:26:16 10.88 68.00%

For each value of S, Table 1 reports the
overall time for generating disturbance traces

for both disturbance models (columns “time”),
as well as speedup and effic.(iency) with respect
to the execution time of the sequential
algorithm (the first row in Table 1 referring to
S = 1). As usual in the evaluation of parallel
algorithms, for each value of S, the speedup is
defined as t1/tS, where t1 and tS are, respectively,
the execution times of our disturbance trace
generation algorithm when using 1 and S
parallel slaves. For each value of S, the
efficiency is computed as the ratio between the
speedup and S.
2. Disturbance Trace Slicing: Table 2 shows
the time needed by SyLVaaS to compute k
slices from the disturbance traces generated
using S = 16 slaves from disturbance models D1
and D2, for various values of k, which denotes
the number of computational cores available at
the user side for parallel simulation. To ease
comparison of our results with those in [3], we
used the same values of k as those used in that
paper.

Table 2. Results on slicing of disturbance traces

#slices (k) D1 (h:m:s) D2 (h:m:s)
128 0:4:1 0:8:7
256 0:4:32 0:11:25
512 0:4:52 0:13:17

3. SyLVaaS Complete Workflow: Table 3
reports the time needed to compute (in parallel)
the k simulation campaigns (column “sim.
camp. comp. time”) and the overall SyLVaaS
response time (summing up trace generation,
splitting, and simulation campaign optimisation
times, column “overall time”), for each
disturbance model and each value for k. Results
in Table 3 have been obtained using S = 16
slaves during trace generation and 16 cores to
compute the k simulation campaigns (thus, on
average, each core computed k = 16
campaigns).

Table 3. Results on the entire SyLVaaS workflow

#slic
es (k)

disturbance model
D1

disturbance model
D2

sim.
camp.
comp.
time

(h:m:s)

overall
time
(h:m:s)

sim. camp.
comp. time

(h:m:s)

overall
time

(h:m:s)

128 0:1:44 0:8:56 0:4:1 0:38:24
256 0:0:42 0:8:25 0:2:27 0:40:8
512 0:0:13 0:8:16 0:0:24 0:39:57

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ 10

4. Download of Simulation Campaigns:
SyLVaaS stores simulation campaigns
computed as above in .zip archives, which are
then downloaded by the user. In our
experiments, the size of such files is in the order
of a few hundreds of MB. Hence, their
download into the user cluster can be done
seamlessly over a standard broadband Internet
connection.

CONCLUSION

We have presented SyLVaaS, a Web-based
software-as-a-service tool for HILS-based
System Level Formal Verification (SLFV).
Such a tool allows verification engineers to
 obtain from a Web service the most important
part of their HILS campaigns, i.e., a set of
simulation campaigns to exercise the System
Under Verification (SUV) on all the relevant
operational scenarios (disturbance traces).

As the simulation campaigns are executed at
the user premises, SyLVaaS provides full
Intellectual Property (IP) protection for both the
SUV model, the property to be verified, and the
user verification flow. The simulation may be
carried out in parallel in a user cluster whose
machines have Simulink installed.

To achieve a short response time, the whole
SyLVaaS approach benefits of a cluster of
machines at the SyLVaaS cloud infrastructure.
To the best of our knowledge, SyLVaaS is the
first Web-based software-as-a-service tool for
HILS-based SLFV.

ACKNOWLEDGMENTS

This research has received funding from the
EU 7th Framework Programme (FP7/2007-
2013) under grant agreements n. 317761
(SmartHG) and n. 600773 (PAEON).

REFERENCES

1. Alur R. “Formal verification of hybrid systems”. In:

Proc. EMSOFT (2011), Taipei, Taiwan, 2011, pp. 273‐278.

2. Mancini T., Mari F., Massini A., Melatti I., Merli F.,
Tronci E. “System level formal verification via model checking
driven simulation”. In: Proc. CAV (2013), Saint Petersburg,
Russia, 2013, pp. 296‐312.

3. Mancini T., Mari F., Massini A., Melatti I., Tronci E.
“Anytime system level verification via random
exhaustive hardware in the loop simulation” . In: Proc. DSD
(2014), Verona, Italy, 2014, pp. 236‐245.

4. Mancini T., Mari F., Massini A., Melatti I., Tronci E..
“System level formal verification via distributed multi‐core
hardware in the loop simulation”. In: Proc. PDP (2014), Turin,
Italy, 2014, pp. 734‐742.

5. Penna G. Della, Intrigila B., Melatti I., Tronci E.,
Zilli. M. Venturini “Exploiting transition locality in automatic
verification of finite state concurrent systems”. STTT, 2004; 6:
320–341.
 6. Zuliani P., Platzer A., Clarke E.. “Bayesian statistical
model checking with application to Simulink/Stateflow
verification”. In: Proc. HSCC (2010), Stockholm, Sweden, 2010,
pp. 243‐252.

 7. Mancini T., Mari F., Massini A., Melatti I., Tronci E.
“SyLVaaS: System Level Formal Verification as a Service”. In:
Proc. PDP (2015), Turku, Finland, 2015.

METADATA

Title: System Level Formal Verification as a Service
Authors: T. Mancini1,F. Mari2,A. Massini3, I. Melatti4, E. Tronci5
Affiliation: Computer Science DepartmentSapienza University

Rome, Italy
Email:

1tmancini@di.uniroma1.it, 2mari@di.uniroma1.it,
3massini@di.uniroma1.it; 4 melatti@di.uniroma1.it,
5tronci@di.uniroma1.it
Language: English
Source: SIIT, vol.2, no. 1 (3), pp. 5‐10, 2020. ISSN 2658‐5014
(Print), 2686‐7044 (Online).

Abstract: In this paper, we present SyLVaaS, a Web‐based tool
enabling Verification as a Service (VaaS) of Cyber‐Physical
Systems (CPS). SyLVaaS takes as input a high‐level model
defining the System Under Verification (SUV) operational
environment and computes, using parallel algorithms
deployed in a cluster infrastructure, a set of highly
optimised simulation campaigns, which can be executed in
an embarrassingly parallel fashion on a set of Simulink
instances, each one defining a copy of the SUV model.

Key words: modelled, system, methodology, simulation
campaigns.

About authors:

Mancini Toni Prof. Dr., Computer Science Department
Sapienza University Rome, Italy

Mari Federico, Assistant Prof. Science Department Sapienza
University Rome, Italy

Massini Annalisa, PhD Computer Science Department Sapienza
University Rome, Italy

MelattI Igor, PhD Computer Science Department Sapienza
University Rome, Italy

TRONCI Enrico, Prof. Dr. Computer Science Department
Sapienza University Rome, Italy

