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Abstract. We  present  SyLVaaS,  a Web‐based  tool  enabling  Verification  as  a  Service  (VaaS)  of 
Cyber‐Physical  Systems  (CPS).  SyLVaaS  takes  as  input  a  high‐level model  defining  the  System 
Under  Verification  (SUV)  operational  environment  and  computes,  using  parallel  algorithms 
deployed in a cluster infrastructure, a set of highly optimised simulation campaigns, which can be 
executed in an embarrassingly parallel fashion on a set of Simulink instances, each one defining a 
copy of  the  SUV model. As  the  actual  simulation  is  carried out  at  the user premises  (e.g.,  in  a 
private  cluster),  SyLVaaS  allows  full  Intellectual Property protection on  the  SUV model  and  the 
user  verification  flow.  SyLVaaS  randomises  the  verification order of operational  scenarios,  thus 
enabling anytime estimation of completion time and computation of Omission Probability, i.e., the 
probability  that  there  is a yet‐to‐be‐simulated operational scenario violating  the property under 
verification. This information supports graceful degradation in the verification activity. 
 
Keywords: modelled, system, methodology, simulation campaigns. 

                                            
                        INTRODUCTION 

In this paper, we present SyLVaaS, a Web-
based tool enabling Verification as a Service 
(VaaS) of Cyber-Physical Systems (CPS). 
SyLVaaS takes as input a high-level model 
defining the System Under Verification (SUV) 
operational environment and computes, using 
parallel algorithms deployed in a cluster 
infrastructure, a set of highly optimised 
simulation campaigns, which can be executed in 
an embarrassingly parallel fashion on a set of 
Simulink instances, each one defining a copy of 
the SUV model. As the actual simulation is 
carried out at the user premises (e.g., in a private 
cluster), SyLVaaS allows full Intellectual 
Property protection on the SUV model and the 

user verification flow. SyLVaaS randomises the 
verification order of operational scenarios, thus 
enablinganytime estimation of completion time 
and computation of Omission Probability, i.e., 
the probability that there is a yet-to-be-
simulated operational scenario violating the 
property under verification. This information 
supports graceful degradation in the verification 
activity. Cyber-Physical Systems (CPSs) consist 
of hardware and software components and can 
be modelled as hybrid systems (see, e.g., [1] and 
citations thereof). System Level Verification of 
CPSs has the goal of verifying that the whole 
(i.e., software + hardware) system meets the 
given specifications. Model checkers for hybrid 
systems cannot handle System Level Formal 
Verification (SLFV) of actual CPSs. Thus, 
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Hardware In the Loop Simulation (HILS) is 
currently the main workhorse for system level 
verification and is supported by Model Based 
Design tools like, for example, Simulink 
(http://www.mathworks.com) and VisSim 
(http://www.vissim.com). In HILS, the actual 
software reads/sends values from/to 
mathematical models (simulation) of the 
physical systems (e.g., engines, analog circuits, 
etc.) it will be interacting with. 

 

MOTIVATIONS 

 

System Level Formal Verification (SLFV) 
is an exhaustive HILS, where all relevant 
simulation scenarios are considered.  In [24] a 
methodology has been presented which allows 
exhaustive HILS. Such methodology works as 
follows. The System Under Verification (SUV) 
is a Hybrid System (see, e.g., [1] and citations 
thereof) whose inputs belong to a finite set of 
uncontrollable events (disturbances), which 
model failures in sensors or actuators, 
variations in the system parameters, etc. The 
SUV is a deterministic system (the typical case 
for control systems). Nondeterministic 
behaviours (such as faults) are modelled with 
disturbances. Also, sequences of inputs to the 
SUV are of bounded length, thus the problem 
addressed is bounded SLFV. Accordingly, in 
[2–4] a simulation scenario is a finite sequence 
of disturbances. A system is expected to 
withstand all disturbance sequences that may 
arise in its operational environment. 
Correctness of a system (defined in terms of 
safety properties) is thus defined with respect to 
such admissible disturbance sequences.  

Given a high-level model (disturbance 
model) defining the admissible disturbance 
sequences (disturbance traces), the approach in 
[2–4] works as follows: (i) generates the entire 
set of disturbance traces, (ii) evenly splits such 
set into k ∈ N+ slices in order to allow parallel 
verification, (iii) computes (in parallel) an 
optimised simulation campaign from each slice, 
(iv) executes (in parallel) the generated 
simulation campaigns on a set of k independent 
simulators (e.g., Simulink instances). There, a 
simulation campaign is a sequence of 
simulation instructions, which exploits the 

capabilities of modern simulators to save and 
restore previously stored simulation states 
(much as in explicit model checking). In 
particular, a simulation campaign consists of 
the following commands: save a simulation 
state, restore a saved simulation state, inject a 
disturbance, advance the simulation for a given 
time length. As soon as one of the simulators 
(running the simulation campaign 
corresponding to a slice) finds an error, the 
whole parallel simulation activity stops, and the 
disturbance trace which triggered the error is 
returned as a counterexample. Also, as the 
generated optimised simulation campaigns (one 
per slice) randomise the verification order of 
the traces in the input slice, at anytime during 
the parallel simulation activity it is possible to 
compute an upper bound to the Omission 
Probability (OP), i.e., the probability that an 
error exists, but no error has been found so far, 
and give a quite accurate estimation of the 
completion time. Algorithms for all the 
activities above have been presented in [2–4]. 
However, an off-the-shelf tool to effectively 
support companies working in the CPS business 
in their everyday SUV verification activities 
was not available. To provide such a tool is the 
purpose of [7] and of this paper. 
 

MAIN CONTRIBUTIONS 

 

We present SyLVaaS (see Figure 1), a Web-
based service computing the set of simulation 
campaigns to be used for a SLFV task. 
SyLVaaS introduces the new Verification as a 
Service (VaaS) paradigm, allowing verification 
engineers (SyLVaaS users) to compute the 
simulation campaigns needed to their SLFV 
activities keeping both the SUV model and the 
property to be verified secret, thus achieving 
full Intellectual Property (IP) protection. This is 
mandatory for a VaaS service to be effective 
and usable, as companies consider the design 
effort (hence their SUV models) and their 
verification flow as the core of their IP. 

To enable IP protection, SyLVaaS takes as 
input only a disturbance model, in terms of a 
CMurphi [5] model describing the admissible 
operational scenarios the SUV must withstand. 
The actual verification activity is performed in 
parallel at the user premises (e.g., in a private 
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cluster) running an arbitrarily large set of 
Simulink simulators, using the optimised 
simulation campaigns computed by SyLVaaS 
and plugging-in a Simulink driver 
downloadable from the SyLVaaS Web site.  

In case an error is found during verification, 
a counterexample is generated. Such a 
counterexample can then be used to correct the 
SUV and to produce a new SUV model. At this 
point a new SLFV activity can start. Note that, 
given that the set of admissible operational 
scenarios (hence: the disturbance model) has 
not changed, there is no need to interact with 
SyLVaaS again, as the previously computed 
simulation campaigns can be reused. This 
property also hides the verification flow of 
SyLVaaS users.  

The operational scenario generation 
algorithm in [2] is a sequential algorithm, 
taking about half an hour on their case study. 
Although this time is negligible with respect to 
the whole HILS activity (which can take weeks 
of computation), it becomes a major bottleneck 
in a VaaS context as the one provided by 
SyLVaaS, as it is the most intensive part of the 
computation carried out on the SyLVaaS side 
(i.e., generation of optimised simulation 
campaigns for parallel HILS, see Figure 1, 
right). To achieve fast response time, we 
discuss how we equipped SyLVaaS with a 
parallel algorithm for the generation of 
operational scenarios from a disturbance model, 
whose distributed multi-core implementation 
has been explicitly designed as to operate 
efficiently in a cluster of possibly 
heterogeneous machines. 

Our parallel operational scenario generation 
algorithm consists of an Orchestrator process 
which governs the exploration of the (state 
space of the finite state automaton defined by 

the) disturbance model provided by the user, 
splitting and delegating the work to a battery of 
available Slaves, whose work load is 
dynamically balanced. Slave processes are 
independent from each other and communicate 
only with the Orchestrator. This minimises 
coordination overhead. 

We show experimental results of our 
parallel operational scenario generation 
algorithm on two industry-scale case studies 
(regarding the Fuel Control System (FCS) in 
the Simulink distribution) consisting of, 
respectively, 4,023,955 and 12,948,712 
operational scenarios. Results show that our 
parallel algorithm for operational scenario 
generation scales well with the number of 
slaves. As the operational scenario generation is 
the most computationally intensive computation 
within the SyLVaaS workflow, and given that 
the other step performed by SyLVaaS 
(computation of optimised simulation 
campaigns) already exploits an embarrassingly 
parallel algorithm (from [3]), the entire 
SyLVaaS workflow now benefits from a cluster 
of machines at the SyLVaaS cloud 
infrastructure. 
 

SYSTEM LEVEL FORMAL VERIFICATION 

 

In this section, we describe SyLVaaS in 
terms of input and output, and describe how to 
use the system output. 

 

INPUT 

 

SyLVaaS requires two inputs:  
 1. An integer k > 0 describing the number of 
computational cores available on the user side 
for parallel execution of simulation campaigns 
(hence, for parallel verification);  
2. A disturbance model defining the operational 
environment, i.e., the set of disturbance traces 
the System Under Verification (SUV) should 
withstand, along with a bounded horizon h.  

As it is typically infeasible for a verification 
engineer to define a SUV operational 
environment by explicitly listing all its 
disturbance traces, SyLVaaS, along the lines of 
[2], takes as input a disturbance model defining 

Fig. 1. SyLVaaS VaaS architecture 
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a Disturbance Generator (DG) written in the 
high-level language accepted by the CMurphi 
[5] model checker.  
 

OUTPUT 

 

From the value of k and the input 
disturbance model, SyLVaaS produces k 
simulation campaigns, which can be executed 
in parallel at the user premises over k 
independent simulators, in an embarrassingly 
parallel fashion. Each simulation campaign 
verifies, in a highly optimised way, a disjoint 
and equally sized portion of the disturbance 
traces entailed by the input disturbance model. 
Conversely, all disturbance traces entailed by 
the disturbance model are covered by exactly 
one simulation campaign. This guarantees that 
the System Level Formal Verification (SLFV) 
process is both exhaustive (with respect to the 
set of disturbance traces entailed by the 
disturbance model) and non-redundant.                                                                                 

Furthermore, the verification order of the 
disturbance traces covered by each simulation 
campaign is randomised. This, according to [3] 
enables the computation of an upper bound to 
the Omission Probability (OP) at anytime 
during the parallel simulation. The k simulation 
campaigns are returned to the user via the Web 
interface, together with an abstract Simulink 
driver. Such a driver is a MATLAB script, 
which reads and executes a SyLVaaS-generated 
simulation campaign, by sending simulation 
commands to Simulink. It is abstract, as it must 
be plugged into the SUV Simulink model and 
configured at the user premises (see Fig. 1). 
 

WEB INTERFACE 

 

The Web interface of SyLVaaS is hosted at 
http://mclab. di.uniroma1.it/sylvaas. It consists 
of four main pages: (i) a standard login page, 
(ii) a user console page (accessible after login) 
showing all current, pending, running and 
completed user jobs, (iii) a page to create a new 
job (providing the required input), (iv) a tools 
page, where the generic driver can be 
downloaded. Users can download the 
simulation campaigns for each completed job 
from their console page. 

HOW TO USE SYLVAAS OUTPUT 

 

Given the output downloaded by SyLVaaS, 
the verification engineer, in order to actually 
verify the SUV via exhaustive Hardware In the 
Loop Simulation (HILS), customises and plugs 
the abstract Simulink driver into the SUV 
Simulink model. This task is very easy and 
consists in properly filling the template files 
received by SyLVaaS as part of the abstract 
driver. Such files define: the SUV model, the 
SUV property to be verified (as a monitor 
module), the interface between the driver and 
the SUV, and the mapping between each 
disturbance (in the CMurphi disturbance model) 
and its counterpart in the SUV model. At this 
point, the k downloaded simulation campaigns 
can be executed in parallel on k independent 
simulators. Given the randomisation of the 
verification order of the disturbance traces 
within each simulation campaign, at anytime 
during the simulation process, when values 
done1, done2, .., donek (with donei ∈ [0, 1] for 
all i) of the disturbance traces covered by each 
simulation campaign have been verified 
successfully (i.e., no error has been raised so 
far), the Omission Probability (OP), i.e., the 
probability that a future simulation command 
raises an error, is upper bounded as shown in  
[3]. 
 

EXPERIMENTS 

 

In this section we experimentally evaluate 
SyLVaaS. In particular we provide the 
evaluation of our parallel disturbance 
generation algorithm and of the cloud 
deployment of the overall Verification as a 
Service (VaaS) infrastructure. 

 

SYLVAAS EXPERIMENTAL DEPLOYMENT 

 

We deployed SyLVaaS on overall 
17computational cores allocated to 5 different 
machines. One core (on a machine equipped 
with 2 Intel Xeon 2.83GHz CPUs and 8GB 
RAM) is dedicated to Orchestrator processes, 
while 16 cores evenly distributed in 4 identical 
machines (each one equipped with 2 Intel Xeon 
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2.27GHz CPUs and 24GB RAM) are dedicated 
to Slave processes. The SyLVaaS web interface 
application resides on a yet another host (a tiny 
virtual machine), external to the cluster and 
directly connected to the Internet. 

 

CASE STUDY 

 

We use the same case study of [6, 2- 4], i.e., 
the Fuel Control System (FCS) model included 
in the Simulink distribution. The FCS has three 
sensors subject to faults (disturbances). We 
used two disturbance models for the FCS, D1 
and D2. Model D1 (described in more detail in 
[2]) has a horizon of h = 100 and defines 
4,023,955 disturbance traces. Model D2 is 
defined extending D1 with more complex 
operational scenarios and defines 12,948,712 
disturbance traces over a horizon of h = 200. A 
detailed description of D1 and D2 (not relevant 
for the evaluation of our experiments below) 
can be downloaded from the SyLVaaS Web 
site. 

EXPERIMENTAL RESULTS 

 

1. Parallel Disturbance Trace Generation: 
Table 1 shows the time needed by SyLVaaS to 
generate the disturbance traces entailed by D1 
and D2, when using a varying number S of 
parallel slaves. The level (depth) L to which the 
Orchestrator bounds its search and triggers a 
Slave has been fixed at h/2 after preliminary 
experiments. The number of computation 
bunches executed by the algorithm is 477,727 
for disturbance model D1 and 1,681,594 for D2.   

 

Table 1. Parallel generation of disturbance traces 

#slave
s (S) 

disturbance model  
D1 

disturbance model  
D2 

 time 
(h:m:s) 

speedup effic. time 
(h:m:s) 

speedu
p 

effic. 

1 0:32:32 1.00 100.00% 4:45:47 1.00 100.00%
8 0:5:32 5.88 73.50% 0:43:2 6.64 83.00%

16 0:3:11 10.22 63.88% 0:26:16 10.88 68.00%
 
 

For each value of S, Table 1 reports the 
overall time for generating disturbance traces 

for both disturbance models (columns “time”), 
as well as speedup and effic.(iency) with respect 
to the execution time of the sequential 
algorithm (the first row in Table 1 referring to 
S = 1). As usual in the evaluation of parallel 
algorithms, for each value of S, the speedup is 
defined as t1/tS, where t1 and tS are, respectively, 
the execution times of our disturbance trace 
generation algorithm when using 1 and S 
parallel slaves. For each value of S, the 
efficiency is computed as the ratio between the 
speedup and S. 
2. Disturbance Trace Slicing: Table 2 shows 
the time needed by SyLVaaS to compute k 
slices from the disturbance traces generated 
using S = 16 slaves from disturbance models D1 
and D2, for various values of k, which denotes 
the number of computational cores available at 
the user side for parallel simulation. To ease 
comparison of our results with those in [3], we 
used the same values of k as those used in that 
paper.  

Table 2. Results on slicing of disturbance traces 

#slices (k) D1 (h:m:s) D2 (h:m:s) 
128 0:4:1 0:8:7 
256 0:4:32 0:11:25 
512 0:4:52 0:13:17 

 

3. SyLVaaS Complete Workflow: Table 3 
reports the time needed to compute (in parallel) 
the k simulation campaigns (column “sim. 
camp. comp. time”) and the overall SyLVaaS 
response time (summing up trace generation, 
splitting, and simulation campaign optimisation 
times, column “overall time”), for each 
disturbance model and each value for k. Results 
in Table 3 have been obtained using S = 16 
slaves during trace generation and 16 cores to 
compute the k simulation campaigns (thus, on 
average, each core computed k = 16 
campaigns).  

Table 3. Results on the entire SyLVaaS workflow 

#slic
es (k) 

disturbance model  
D1 

disturbance model  
D2 

sim. 
camp. 
comp. 
time 

(h:m:s) 

overall 
time 
(h:m:s) 

sim. camp. 
comp. time 

(h:m:s) 

overall 
time 

(h:m:s) 

128 0:1:44 0:8:56 0:4:1 0:38:24 
256 0:0:42 0:8:25 0:2:27 0:40:8 
512 0:0:13 0:8:16 0:0:24 0:39:57 
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4. Download of Simulation Campaigns: 
SyLVaaS stores simulation campaigns 
computed as above in .zip archives, which are 
then downloaded by the user. In our 
experiments, the size of such files is in the order 
of a few hundreds of MB. Hence, their 
download into the user cluster can be done 
seamlessly over a standard broadband Internet 
connection.  

 

CONCLUSION 

 

We have presented SyLVaaS, a Web-based 
software-as-a-service tool for HILS-based 
System Level Formal Verification (SLFV).  
Such a tool allows verification engineers to 
 obtain from a Web service the most important 
part of their HILS campaigns, i.e., a set of 
simulation campaigns to exercise the System 
Under Verification (SUV) on all the relevant 
operational scenarios (disturbance traces). 

As the simulation campaigns are executed at 
the user premises, SyLVaaS provides full 
Intellectual Property (IP) protection for both the 
SUV model, the property to be verified, and the 
user verification flow. The simulation may be 
carried out in parallel in a user cluster whose 
machines have Simulink installed. 

To achieve a short response time, the whole 
SyLVaaS approach benefits of a cluster of 
machines at the SyLVaaS cloud infrastructure. 
To the best of our knowledge, SyLVaaS is the 
first Web-based software-as-a-service tool for 
HILS-based SLFV. 
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