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Abstract. Probabilistic error propagation analysis is a valuable part of dependable systems
development process. It helps to estimate consequences of faults of particular system
components to overall system reliability, which is required by industrial reliability methods
such as FTA and FMEA. The dual-graph error propagation model is a recently presented
stochastic model that captures system properties relevant for the error propagation analysis.
It allows automatic generation of discrete time Markov chain models for quantitative
estimation of system reliability e.g. a mean number of errors in critical system outputs.
Likewise all Markov-based analytical approaches, our method is prone to the state space
explosion problem: The number of states of the Markov model grows exponentially with the
number of system components. This article introduces a new algorithm for automatic nesting
of huge error propagation models that allows generation of a set of interconnected small
Markov-chain models for each hierarchy level, instead of one large and incomputable Markov
chain model.

Key word: model-based system; baseline models; elements, data storages, directed control;
flow arcs; analytical software tool.

INTRODUCTIONMODEL-
BASED SYSTEMS

Model-based system development
approaches are popular nowadays in
automotive, avionic, and aerospace industrial
domains. UML/SysML [1, 2], AADL [3], and
MATLAB Simulink/Stateflow [4, 5] are
commonly used baseline models that allow
generation of fully or semi-automatic toolchains

for system design, implementation, integration,
verification, and deployment. The model-based
development approach also gives opportunities
for a wide range of model-based system
analysis techniques that can be applied in early
stages of system development, including the
error  propagation analysis.1.2. ERROR
PROPAGATION ANALYSIS.

Our research group for model-based system
analysis is focused on stochastic error
propagation analysis of heterogeneous systems
developed with common baseline models like
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MATLAB Simulink/Stateflow and
UML/SysML. Recently, we have introduced,
[6-9] a dual-graph error propagation model
(DEPM) that captures key system design
aspects relevant to error propagation processes.
The DEPM helps to estimate the likelihood of
error propagation to hazardous system parts and
quantify the negative impact of a fault in a
particular component on the overall system
reliability. The DEPM consists of five sets:
elements, data storages, directed control flow
arcs extended with control flow decision
probabilities, directed data flow arcs, and
conditions of the elements. A simple DEPM is
shown in Fig.1, a).

a) b) Conditions of elemnent A
if (True)
then (d1=0k)&&(d2=0k) with pr 0.1

then (d1=erron&a(d2=error) with pr 0.9

Conditions of element B

if (@1==0K}):

then (d2=0k) with pr 1.0
if (d1==error)

then (d2=0K) with pr 0.9
then (d2=error) with pr 0 1

Conditions of elernent C

if ([@2==0K)&&(d3 == 0k)

then (output=ok) with pr 1.0

if (@2==error)||(d3 == errory
then (output= error) with pr 0.8
then (output= ok) with pr 0.1

c) Mean number of errors in
data storage output: 3.63

Fig. 1. An example of an error propagation model:
a — a graphical representation, b — probabilistic
conditions of the elements that describe their reliability
properties, ¢ — data storage output. Image from [10]

Elements A, B, and C represent executable
parts of the system. Each element has data
inputs and outputs. Data storages d1, d2, d3,
and output represent variables, which can be
read or written by the elements. During
execution errors can occur on its outputs. The
incoming errors can propagate from inputs to
outputs depending on reliability properties of an
element, defined with probabilistic conditions,
(see Fig. 3, b).

The control flow arcs (black lines) connect
the elements. Each control flow arc is weighted
with a transitions probability: after the
execution of A, B will be executed with
probability 0.7 and C with probability 0.3. The
data flow arcs (purple lines) describe data
transfer between the elements. Data flow arcs
connect elements with data storages. The data

flow arcs are considered to be the paths of data
error propagation.

ANALYTICAL SOFTWARE TOOL
ERRORPRO

ErrorPro [10] is our analytical software tool,
which is based on the DEPM concept. This tool
allows the creation of DEPMs and automatic
computation of numerical reliability properties
of a system using internal Markov chain
models. For instance, the mean number of
errors in the data storage output during 100
steps (execution of one element is one step) is
equal to 3.63 as it is shown in Fig. 3, c). The
PRISM model checker [11] is used as a
computational backend for the Markov models.
A DEPM model can be stored in a special
XML-based format.

Our transformation methods allow the
generation of DEPMs automatically from
MATLAB Simulink models [12] and UML
Activity diagrams [13]. Currently, we are
working on the generation of DEPMs for plain
C code using the LLVM technology. However,
our method, similarly to the majority of
Markov-based analytical approaches, is prone to
the state space explosion problem: The number
of states of the Markov model grows
exponentially with the growth of the number of
system components. This article introduces a
new algorithm for automatic nesting of large
and flat error propagation models. This allows
generation of a set of interconnected small
Markov-chain models for each hierarchy level
instead of one large and incomputable Markov
chain model.

AUTOMATIC NESTINGNESTED ERROR
PROPAGATION MODELS

ErrorPro supports hierarchical DEPMs with
compound elements. Fig. 2 shows an example
of a flat (a) and a nested (b) DEPMs. Both
models are identical from the functional point
of view. The compound element subtopl level2
contains internal elements el, e2, and e3 and
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data d2, d3, and d5. The control flow transfers
to the initial element of the sub model el at the
moment when the compound element is
executed. The sub model has external data input
d1 and output d4.

Fig. 2. An example of a flat (a) and nested (b) dual-graph
error propagation models

Flat model Algorithm settings

Simple
Hammock
Search

| |
| |
| |
| |
| |
| |
| |
| Nested model level 1 |
| |
| |
| }
| |
| |
| |
| Nested model level 2 |
| |

| 1
| |
| Direct I
| |
| |
| |

S

Nested maodel

Fig. 3. UML activity diagram that describes the top-level
architecture of the presented algorithm for automatic
nesting of DEPM models

ARCHITECTURE OF THE NESTING
ALGORITHM

The top-level structure of the presented
algorithm is shown in Fig. 3 in a form of a
UML activity diagram. Flat model and
Algorithm settings are the inputs; Nested model
is the output. The algorithm consists of three
blocks: Canonical Chain Search (CCS), Simple
Hammock Search (SHS) and Direct Hammock
Search (DHS). The algorithm is also subdivided
into four levels that can be used separately.

Level O: The algorithm uses only DHS.

Level 1: The algorithm uses only CCS.

Level 2: The algorithm uses CCS and than
SHS.

Level 3: The algorithm uses CCS, SHS, and
then DHS.

The benchmarking results of the algorithm,
described later in this article, will refer to these
four levels.

DIRECT HAMMOCK SEARCH

A hammock is a region of a DEPM control
flow graph (CFG) that has a single entry node
and a single exit node [14]. The example is
shown in Fig. 2. Elements el (entry node), e2,
and e3 (exit node) form a hammock.

The DHS is a greedy algorithm that finds
hammocks in a DEPM. The DHS algorithm is
parameterized with four parameters that define
properties of desired submodels: min number of
elements, max number of elements, min number
of data, and max number of data. The DHS runs
depth-first searches on the CFG subsequently
for each element, starting with the initial
element. The depth-first search always selects
an element with the minimum number of
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incoming control flow arcs among the control
flow successors of the current element. In each
step of the depth-first search, we add visited
elements and data, connected to these elements,
into a temporary submodel. If the temporary
submodel is a correct hammock and if it
satisfies the defined parameters, then the
algorithm substitutes this region in the top-level
model with a compound element that contains
the generated submodel. If the temporary
submodel has more elements or data than
defined, then the DHS starts a new search,
starting with the next element of the top-level
DEPM according to the sequence of an internal
array of the elements.

CANONICAL CHAIN SEARCH

A canonical chain contains two elements
connected with a control flow arc. The first
element has outgoing control flow arcs only to
the second element or to itself. The second
element has incoming control flow arcs only
from the first element or from itself. The DEPM
in Fig. 2 contains only one canonical chain (e0,
el).

The CCS algorithm itself is based on the
depth-first search algorithm that finds and
stores information about all canonical chains in
the CFG of the flat DEPM. After that, it
generates  submodels, which consist of
sequences of elements of the canonical chains
and data slots, connected with these elements,
that satisfy the given parameters. According to
our analysis of a system described in [12], 88%
of all software elements have only one outgoing
control flow arc. This makes the CCS an
effective and fast per filter before the SHS and
DHS.

SIMPLE HAMMOCK SEARCH

A simple hammock is a hammock that
contains only one element and its control flow
successors. The hammock in Fig. 2 is a simple
hammock: it consists only of the element el and

its control flow successors e2 and e3. The SHS
algorithm is similar to CCS. It is based on the
breadth-first search over the CFG nodes. It finds
all simple hammocks that satisfy the algorithm
parameters and generates submodels. This SHS
is rather effective after the application of the
CCS because all the chains of the original flat
model are nested and we can perform the fast
SHS before the more complex and hence slow
DHS.

BENCHMARKINGDEPM GENERATOR

We have implemented an automatic
generator of random large DEPM models in
order to test and benchmark the introduced
algorithm. The generator has three parameters:
number of elements, number of data, and a
parameter p that defines the control flow
structure of the DEPM. For instance,
p = [0, 0.85, 0.13, 002] defines that 85% of the
elements of the generated DEPM will have only
one control flow output, 13% will have two
control flow outputs, and 2% will have three
control flow outputs. The generation process
consists of the next steps:

Stepl: Create the set of elements.

Step2: Create the set of data.

Step3: Connect all elements sequentially
using control flow arcs.

Step4: Randomly create additional control
flow arcs according to the parameter p and
specify equal control flow probabilities to all
outgoing control flow arcs for all elements.

Step5: Randomly connect all the data slots
with the elements with one incoming and one
outgoing data flow arcs.

BENCHMARKING RESULTS

The speed and performance of the algorithm
have been evaluated using the randomly
generated sets of DEPM models. The goal of
the first group of experiments is to measure the
execution time for different types and sizes of
the DEPMs. Four plots in the Fig. 4
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demonstrate the numerical results. Each plot has
been created for different settings of the
parameter p. The number of data slots is equal
to the number of elements and vary from 100 to
2000 with the step equals to 100. We have
generated 100 random DEPMs of each size and
compute the mean execution time (in seconds)
for each of four levels of the nested algorithm.
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Fig. 4. Execution time of the four levels of the nesting
algorithm for different types and sizes of DEPMs

The nested algorithm has been run with the
next values of the parameters: min number of
elements = 2, max number of elements = 20,
min number of data = 1, and max number of
data =7.

The plots in Fig. 4 show that the execution
time of the DHS (level 0) considerably grows
with the control flow complexity. The level 3
(CCS + SHS + DHS) shows much better
results. The results of the level 1 (CCS) and
level 2 (CCS + SHS) are almost similar that
defines that the SHS works very fast after the
application of the CCS. The second group of the
experiments has been carried out in order to
estimate the performance of the algorithm. The
main goal of the algorithm is to create a nested
DEPM in such way that it will be converted into
a set of small and computable Markov chain
models. The maximum cumulative number of
states of the Markov models (for the worst case)
can be computed according to the next formula:

k
P=[]NE2V,

i=1
where NF is the number of elements and N is
the number of data slots in the i submodel. We
used P as the performance metric in the second
group of the experiments. Fig. 5 demonstrates
the comparison of the performance for DHS
only (level 0) and CCS + SHS + DHS (level 3)
according to the defined performance metric.
The parameter p is constant and equals to
[0, 0.96, 0.04, 0.0]. The number of data slots is
equal to the number of elements and vary from
100 to 2000 with the step length 100. The
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number of repetitions for each model size is
also 100. This plot shows that even the
application of only DHS results in linear growth
of the cumulative number of states of the
Markov chin models. The entire algorithm gives
even better results. This allows solving the state
space explosion problem of our approach to the
stochastic error propagation analysis.

||||||||||||

Fig. 5. Performance comparison of the DHS (level 0) and
CCS + SHS + DHS (level 3) for different sizes
of DEPM models

Number of data and element on top level

06 B Number of data slots of top-level model
00 B Number of elements of top-level model
I Perfromance metric

kevel O level 1 level 2 level 3

Fig. 6. Comparison of the performance of all four levels
of the nesting algorithm

Fig. 6 demonstrates another peace of results.
This time for the constant numbers of elements
(1000) and data slots (4000), and
p = [0, 0.96, 0.04, 0.0]. The plot basically
shows that the performance of the DHS drops
dramatically if the number of data is greater
than the number of the elements. In the
particular case, the top-level DEPM has 107
element and 706 data slots that will result in a
huge and incomputable DEPM. However, the
application of the entire algorithm (level 3)
results in very good nesting: only 14 data slots
and three elements in the top-level DEPM.

CONCLUSIONS

The new nesting algorithm for dual-graph
error propagation models (DEPM) has been
introduced in this paper. The algorithm copes
with the state space explosion problem of the
underlying Markov chain models. The
algorithm consists of three separate blocks:
Canonical Chain Search (CCS), Simple
Hammock Search (SHS) and Direct Hammock
Search (DHS). All three blocks can be used
separately. The algorithm has been embedded
into the new version of our analytical software
tool ErrorPro. Also, the generator of random
DEPMs has been implemented, which allowed
us to perform an extensive benchmarking of the
performance properties of the introduced
nesting algorithm reported in this paper.
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AHHOTauuA: BepoATHOCTHbLIM aHaNM3  PaAcnpPoCTpaHeHuA
OWMNBOK — BaXHasA 4YacTb npouecca pa3paboTKM HaZEeKHbIX
cuctem. 3TO  NOMOraeT OUEHUTb NOCNeAcTBMA  OTKA30B
OTAEeNbHbIX KOMMOHEHTOB cUCTEMbl AnA obLelt HafeXHOCTU
cucTembl, 4to Tpebyetca ANA  MeTO40B MPOMbIWIEHHOMN
HagEeXHOCTN, Takux Kak FTA wu FMEA. Mogpenb
pacnpocTpaHeHns OWMBOK C ABOMHbIM rpadom — 3TO HeAABHO
npeacTaBNeHHAA CTOXacTUYecKas moaenb, Kotopasa pukcupyer
CBOMCTBA CUCTEMbI, OTHOCALLMECA K aHa/IN3Yy PacnpoCTpaHeHUs
oWwMn60K. ITO NO3BONAET aBTOMATUYECKM TFeHepupoBaTb
mogenn ueneir MapKkoBa C AMCKPETHbIM BpemeHem Ans
KO/IMYECTBEHHOM OLUEHKM HAAEKHOCTU CUCTEMbI, Hanpumep,
cpepgHee KOMYecTBO OWMBOK B KPUTMYECKUX BbIXOLHbLIX
OAHHbIX cucTembl. Kak M Bce aHanUTMYecKMe noaxonbl Ha
ocHoBe MapKoBa, Hal meTog, noasepKeH npobaeme B3pbiBa
NPOCTPAHCTBA COCTOAHWUM: YNCNO COCTOAHUIN Mmogenn MapKosa
pacTeT 3KCMOHEHLMANbHO C YMC/IOM KOMMOHEHTOB CUCTEMBI.
B 3TOM cTaTbe npeacTaBfieH HOBbIM anroputT™
aBTOMATUYECKOTO B/IOMKEHWA MOoZenel pacnpocTpaHeHus
OrpOMHbBIX OLIMBOK, KOTOPbIM NMO3BO/AET reHepMpPoBaTb Habop
B3aMMOCBA3aHHbIX HEGONbWNX Moaenel Leneit Mapkosa gna
Ka)KAOro YpPOBHA MepapXxmMm BMECTO OAHOW 6onbluoh W
HeBblUMCIMMOW MoZenu Lener MapKosa.

KnioueBble cnoBa: mogenbHaa cuctema; 6asoBble moaenu;
3N1E€MEHTbI, XPaHWAMULLA AaHHbIX, HanpaBieHHOe ynpaBaeHue;
LYY NOTOKA; aHaIMTUYECKMIA MPOTPAMMHbBIN MHCTPYMEHT.
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