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Abstract. This article presents a description of approach for development the predictive di-
agnostic models of computer numerical control (CNC) metal-cutting machine nodes. This
approach based on using of bidirectional long short-term memory (BiLSTM) neural networks.
The architecture of such neural networks, the method of preprocessing the data recorded
during the operation of the machine tool are described. Examples of the application of the
approach for diagnostics of the state of the cutting tool and bearings of electric motors on
the machine tool are presented. To estimate the remaining lifetime of the cutting tool, the
proposed BiLSTM model uses indirect information - vibration values and dynamometry along
three axes. The article presents a comparison of the data obtained from the diagnostic model
for assessing the maximum wear of the tool edge and real data for the values from the test
sample. A diagnostic model has been developed to assess the state of the bearings of an
electric motor by vibration values, which determines the presence of a malfunction and one
of four classes - a defect in the cage, ball, inner ring or outer ring of the bearing. The optimi-
zation of the classifier model was carried out taking into account the specifics of vibration
signals in the presence of defects in the bearings of the electric motor of a metal-cutting
machine.

Key word: metal-cutting machining; diagnostic; cutting tool state; cutting tool wear; bear-
ings state; deep neural networks; long short-term memory; neural networks; monitoring sys-
tem; predictive diagnostic.

INTRODUCTION

Timely determination of the condition of the
equipment and its maintenance has been and re-
mains an important task in any production.
Moving to the concept of Industry 4.0 and digi-
tal factories leads to the fact that during the op-
eration of equipment, huge amounts of data are
stored [1].

This work was supported by the Ministry of Education of

the Russian Federation, project 0838-2020-0006. "'Fun-
damental study of new principles for the creation of prom-

It should be noted that the operation of the
same type of equipment allows using the accu-
mulated information not only for analyzing the
technological and economic indicators of the ef-
ficiency of a particular type of machine tool [2],
but also for the automatic determination of pre-
defect states and generation of such software
blocks for integration into the control system of
a specific machine tool.

ising electromechanical energy converters with charac-
teristics above the world level, with increased efficiency
and minimum specific indicators, using new highly effi-

cient electrotechnical materials."
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There are a number of works devoted to the
development of diagnostic models based on var-
ious types of neural networks for determining
the state of nodes of CNC machines.

Most of the approaches are based on deter-
mining the state of any machine tool unit based
on operational vibrometric information and
other time signals.

For example, in a number of works exam-
ples of determining the state of a cutting tool of
a CNC machine tool are presented using neural
networks with long short-term memory [3-5],
convolutional neural networks [6-7], fuzzy neu-
ral networks [8].

There are also works devoted to the determi-
nation of bearing defects in electric motors of
CNC machine tools.

In this work we show approach to use deep
learning to develop diagnostic models of a CNC
machine tool based on bi-directional LSTM.

APPROACH BASED ON BILSTM
NEURAL NETWORKS. BIDIRECTIONAL
LSTM

Recurrent neural networks with long short-
term memory (LSTM) [9] are well suited for
solving the task of classifying and predicting the
time series in cases where the boundaries of
events in the studied system are not strictly de-
fined and the dependence of some events on oth-
ers is separated by a certain time interval.

LSTM is able to memorize dependencies,
both for a short period and for a long period due
to the inclusion of “forgetting gates” in its com-
position.

One node of such a neural network is a unit
that includes several gates, each of which per-
forms its function.

A graphical representation of the architec-
ture of the one unit of LSTM presented in Fig. 1.

At each time step t in the LSTM, the hidden
state h' is updated with current data, the hidden
state at the previous time step ht?, the input gate
it, the forgetting gate f !, output gate o' and
memory cell c'.

The update process is performed according
to the system of equations (1).

Fig. 1. Architecture of the one unit of LSTM
it = o(Wxt + Vih'™ + '),
f'=o(WiXt+Vht+b"),
ot = o(WOxt + V°h"! + b°), (1)
¢t =f'Octt +itO tanh(Wext + Veh' T+ b°),
h'=o'® tanh(ch),

where the model parameters, including
We R veR™ as well as beR? are con-
stant for all stages of the model’s work and get
values during model training, ¢ is the sigmoidal
activation function, © stands for the Hadamard
product, and Kk is the hyperparameter represent-
ing the dimension of hidden vectors.

Thus, the system of equations (1) determines
the function of the hidden layer H.

LSTM is designed directly for processing
serial data expressed as a time series.

In addition, the output signal at the final time
stage is used to predict the output signal on the
linear regression layer, as shown in the equa-
tion (2).

y, =W'h @)
where W'e R? and z is the dimension of the
output of the entire model. To train the model,
the predicted value of the target value y is com-
pared with the true value of the target value vy,
and the mean-squared error is calculated as the
loss function (3).

MSE = = 37, (-, 3)

where n is the size of the training sample.

The disadvantage of simple LSTM is the fix-
ation of the considered values of time series only
in the opposite direction - from the current state
to the initial one.
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When diagnosing the state of complex ob-
jects, serial data from sensors have stable time
dependences and it makes sense when building
models to take into account not only the direct
dependence of the value, but also the inverse.

To solve this problem, a bidirectional LSTM
is used. Bidirectional LSTM [10] are able to
process input time series data in two directions -
forward and reverse (each direction has its own
hidden layer of a neural network), and then
transmit their output layer of linear regression.

The following system of equations (4) and
(5) determine the corresponding function of the
hidden layer, the signs — and «— denote the di-
rect and reverse processes.

Thus, the system of equations (4) character-
izes the hidden layer for the direct LSTM.

it = o(WiZt + ViRt~ + bY),
ft=o(W/ & + VIR + b)),
8t = o(Wozt + Vont" + b°), (4)
C=frO T +1
©) tanh(V_)VCJ_c’t +VCht-1 4+ I;C),
ht = 3t © tanh(é?)
The system of equations (5) characterizes
the hidden layer for the inverse LSTM.

it = o(Wixt + Viht=1 + bY),
ft=o(Wrxt + VIRt + b)),
6t = o(Woxt + VOht=1 + b°), (5)
gt = ]‘Et Q&1+t
) tanh(VT/CJ?t + VRt + EC),
ht = 6t O tanh(&Y).

Then the full representation of the hidden
layer of bidirectional LSTM is the concatenation
of the vectors of the direct and reverse pro-
cesses (6).

ht = ht - ht (6)

DATA COLLECTION
AND PREPROCESSING

In the course of technological processing by
CNC machines, information about the operating
modes of the machine is accumulated - the
workpiece being processed, the frequency of ro-
tation of the machine units, the processing time
and time series value information - vibrometry,
electrical parameters, etc. The amount of time

value information depends on the equipment of
the machine with sensors. All received infor-
mation is accumulated in a single enterprise-
level database. Also in this database, protocols
are recorded for the failure of machine units, re-
placement of consumables and repairs. All rec-
orded time value information from the sensors is
stored in two forms - raw, that is, directly the
values recorded from the sensors and normal-
ized [11].

Data normalization is performed according
to equation (7).

Ut e @)
where v,; is normalized value, v; — real value
from the sensor, H,,,, and H,,;, — upper and
lower measurement limits of the sensor.

DIAGNOSTIC OF CUTTING
TOOL STATE

We used the results of metal processing on a
high-speed CNC  machine  RodersTech
RFM760 [12] (Fig. 2) as input data for the de-
velopment of diagnostic models of the state of
the cutting tool.

Fig. 2. CNC machine Roders Tech RFM760

The machine is additionally equipped with
vibration acceleration sensors for recording vi-
bration values along three axes and a three-axis
platform dynamometer installed between the
processing table and the workpiece to measure
the values of cutting forces.
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The cutting tool is a tungsten carbide cutter
with three flutes. The amount of tool wear was
measured using a LEICA MZ12 microscope
[13]. Stainless steel of hardness 52HRC [14]
was used as the material to be processed. The
spindle rotation speed is 10400 min?; feed
speed — 1555 mm / min; radial cutting depth (Y-
axis) — 0.125 mm; axial cutting depth (Z-axis) —
0.2 mm. Data from vibration acceleration sen-
sors and a dynamometer were recorded with a
sampling rate of 50 kHz. CNC machine pro-
cessing was carried out using 6 cutting tools.
During processing, for each tool many times
(more than 300 times for each tool), data from
vibration and force sensors and the total amount
of wear of each cutting edge of the tool after the
next milling transition are recorded. Milling
transitions were carried out with the same cut-
ting length, that is, the cutting path was a con-
stant.

Fig. 3 shows the dependence of the wear
value of each cutting edge for one of the cutting
tools with an increase of milling transitions.
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Fig. 3. Dependence of the wear value of each cutting
edge for one of the cutting tools with an increase
of milling transitions

cutting tool edge 1
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cutting tool edge 3

DEVELOPMENT OF A DIAGNOSTIC
MODEL TO PREDICT THE AMOUNT
OF TOOL WEAR

The task of assessing wear is formulated as
follows: from the values from the vibration and
force sensors, it is necessary to estimate how
many more processing transitions it is possible
to carry out using the cutter — the remaining life-
time. The restrictions — the cutter is considered
suitable for further processing if the wear of any
of the cutting edges does not exceed the value of
165*10° mm.

Equation (8) is the function of evaluation the
predicted value of diagnostic models.

e 10— 1, ifd<0

8
ed/*5 — 1, ifd >0 ®

S(d) = {

dsz_CF

where cw is the residual life value predicted by
the model, cr is the actual residual life value, d
is the model prediction error. It should also be
noted that the evaluation function is set in such
a way that an overestimated estimate of the re-
sidual life has a greater exponential penalty [8].

The experimental results are divided into
two main sets — the data obtained during pro-
cessing by three cutting tools were used in the
training of the diagnostic model; data obtained
during processing by the other three cutting
tools were used to test the final model. Training
and testing of diagnostic models were carried
out using the Keras package [15].

The bidirectional LSTM includes two
LSTMs (100 neurons in the hidden layer and 1
neuron in the output), differing in the direction
of the input time series and a fully connected
layer to combine the results with one output neu-
ron.

Fig. 4 shows the resulting dependences of
the wear (maximum wear value of any edge) of
the cutting on the number of milling transitions,
obtained from the actual data (real value) and
wear values predicted by the diagnostic model
based on the bidirectional LSTM for one of the
test cutters. Dependence deviations are within
2.5%.

- diagnostic model predicted value
- réal value
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]
3

Cutting toal

50 160 150 200 50 300
Cutting transition

Fig. 4. Real wear value of cutting edge and the value
predicted by the bi-directional LSTM diagnostic model

Therefore, the proposed diagnostic model
based on the bidirectional LSTM quite accu-
rately determines the value of wear according to
information obtained from vibration and force
sensors and can be used to assess the wear of a
cutting tool for operational use of the CNC ma-
chine.
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DEVELOPMENT OF A DIAGNOSTIC
MODEL FOR DETERMINING A DEFECT
IN THE BEARING OF THE MACHINE
SPINDLE MOTOR

Bearing defects occur at characteristic fre-
quencies, some of which are associated with its
geometric parameters, while others are purely
random. High frequency bearing vibrations are
irregular or random in nature. The dependences
of such vibrations obtained using a vibration an-
alyzer make it possible to evaluate fluctuations
or “jumps” in amplitude and frequency. Such
phenomena can be explained by examining the
forces generated by bearing defects.

A defective bearing can generate vibration
of different types of frequencies, including at
natural frequencies [16]. Impact interaction be-
tween bodies and raceways of a bearing excites
vibrations of machine elements and bearing ele-
ments at natural frequencies. Each element dur-
ing shock exposure is excited at its own fre-
quency. Bearing defects act by shock pulses on
various parts of the bearing, causing them to vi-
brate in their own modes of vibration.

The manifestation of the eigenfrequencies
of the bearing elements is closely related to rotor
frequencies. But unlike frequencies that are
multiples of the rotational frequency, vibration
at natural frequencies is almost always gener-
ated by several different bearing elements that
generate several different frequencies of differ-
ent amplitudes. Bearing defects can be divided
into several types, depending on the type of
wear [17]:

defect of the cage of bearing

F = —2L_xRPM;
Di+D,

defect of the ball
F=22x_2i_xppM;
Dp Di+Dy
defect of the inner ring

F = —°xMxRPM;
outer ring defect
F = —2_ xMxRPM.
Where: Di is the diameter of the inner ring, Do
is the diameter of the outer ring, Db is the diam-
eter of the ball, M is the number of rolling bod-

ies, RPM is the shaft rotation frequency, F is the
frequency of the defect.

The amplitude-frequency characteristics are
obtained in the presence of various types of de-
fects (5 classes). The initial sample is divided in
a 60/40 ratio for each type of defect, respec-
tively, into the training and verification ones: 10
different cases of presence of each of the defects
were recorded, 6 of them were trained in the
neural network, and 4 were tested. This data set
allowed us to obtain more accurate results and
avoid random coincidences. For the classifica-
tion of these sequences of frequency and ampli-
tude, a recurrent neural network with long short-
term memory was used. To speed up learning on
large data sets, we used the distribution of cal-
culations and data among the processor cores
and the graphics processor.

The LSTM performs additive interactions
that can help improve the gradient flow over
long sequences during training. Each defect is
represented as an array of one line, in which the
obtained values of the amplitudes are recorded
in a row. The result is an even larger array of 50
such lines. During training, by default, the soft-
ware breaks the training data into mini-lots and
completes the sequences so that they have the
same length. Too much filling can have a nega-
tive impact on network performance. In order to
avoid adding too many indents during the train-
ing process, it is necessary to sort the training
data by the length of the sequence so that they
have the same length.The initial data of the fre-
guency response array were sorted by the length
of the sequence. A histogram of sorted data
lengths is shown in the Fig. 5.

Sorted Data

o 5 10 15 20 25 30
Sequence

Fig. 5. The histogram of sorted data

The architecture of the BiLSTM is defined.
The size of the input data is set, which will be a
sequence of size 1 (the size of the input data by
the number of features). The bidirectional layer
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Fig. 6. Learning curve and loss-classification errors curve

of the BiLSTM with 100 hidden nodes and an
out-put representing the last element of the se-
quence is specified. The network also includes a
fully bonded size 4 layer, followed by a softmax
layer and a classification layer

The neural network for detecting and classi-
fying bearing defects as a result has 5 layers.

The first layer is the sequence input layer.
The second Bi-Directional LSTM Level
(BILSTM) studies the bi-directional long-term
relationships between time series time steps or
sequence data.

These dependencies can be useful when it is
necessary for the network to learn from the com-
plete time series at each time step. The third
fully connected layer multiplies the input signal
with a weight matrix, and then adds a dis-place-
ment vector. The fourth layer of softmax is an
output block activation function. For classifica-
tion tasks, the softmax layer should follow the
fully connected layer. Finally, the fifth output
layer is the classification layer, which computes
the cross-entropy loss for multiclass classifica-
tion problems with mutually exclusive classes.
This loss is a measure of the discrepancy be-
tween the true value of the estimated parameter
and the parameter estimate. The standard
method for training neural networks is the
method of stochastic gradient descent (SGD).
However, it can diverge or converge very slowly
if the training step is not tuned accurately
enough. Therefore, there are many alternative

methods to accelerate the convergence of learn-
ing and save the user from the need to carefully
configure hyperparameters.

These methods often calculate gradients
more efficiently and adaptively change the iter-
ation step. One such method is the adaptive in-
ertia method (Adam). The Adam solver was
used as a learning function, the gradient thresh-
old was set to 1, and the maximum number of
epochs was 200. The sequence was added to the
maximum length. To keep the data sorted by the
length of the sequence, their mixing is prohib-
ited.Neural network training completed. In the
learning process, a so-called learning curve is
obtained (expresses the accuracy of the net-
work), which tends to 100% with an increase in
the number of iterations. A curve of the number
of loss-classification errors is also obtained.
Graphs of both curves are shown in the fig. 6.

From the graph in figure 6 it can be seen that
after about the 180th iteration, accuracy has an
unchanged value, which suggests that 200 itera-
tions are enough for learning. Thus, the neural
network is trained at 60% of the sample.

To determine the classification accuracy
value, 40% of the sample was used. Sequence
control data is loaded as an XTest array. The
YTest categorical tag vector contains 4 instances
of each defect.The neural network model was
trained using mini-series of sequences of the
same length. The control data must be organized
in the same way. Sorted test data by sequence
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length. The classification of defects on the test
data set and the calculation of the classification
accuracy value are performed. YPred is a cate-
gorical label vector predicted by the neural net-
work model. By comparing the YPred vector
with the YTest vector, the accuracy of neural net-
work classification is calculated. After obtaining
the classification accuracy values, the values of
YPred tags are analyzed. Their comparison with
the categorical vector of labels YTest, which was
set during the verification of the neural network,
showed which defects were identified correctly,
and which were difficult to identify. The table 1
shows the results of comparing the given control
values YTest and the obtained YPred. The table
1 shows that 14 out of 20 YPred values coincide
with the YTest control values, which ultimately
gives about 70% accuracy.

The defect of the separator is determined
with 100% accuracy, the defect of the ball with
75% accuracy, and the defect of the inner ring
and the outer with 50% accuracy. The results for
defects of the separator and the ball can be con-
sidered satisfactory, since in most cases the pre-
dicted data are the same. 50% coincidence of de-
fects of the outer and inner rings can be ex-
plained by the similarity of the types of these de-
fects, which is also reflected in the nature of the

noise introduced into the signal by these defects.
Table 1
Accuracy of initial bearing state diagnostic model

As a result, it was found that the designed
bidirectional recurrent neural network with long
short-term memory is a classifier capable of de-
termining the presence and class of a bearing de-
fect by its amplitude-frequency characteristics
of vibration signals with an accuracy of about
70%.

It is noted that the greatest probability of a
diagnostic model error occurs when determining
whether a defect belongs to the inner or outer
bearing ring. With this in mind, when introduc-
ing a diagnostic model into the machine control
and monitoring system, it was decided to form a
single defect class - “defect of the inner or outer
bearing ring”. Combining these defects into a
single class is possible because from the techno-
logical point of view, the consequences of the
transition from a pre-defect state to an accident
are the same - destruction of the bearing body.
The combination of these two classes of defects
in 1 made it possible to increase the accuracy of
the model by 10%.

The result of the development and subse-
quent optimization of the structure of the diag-
nostic model of bearings is presented in the
table 2.

Table 2
Accuracy of bearing state diagnostic models
after optimization

Iteration Defect classes Accuracy
count
No YTest YPred 1 S 5%
1 1 1 40 5 75.4%
2 1 1 43 4 85.7%
3 1 1 102 4 91.9%
4 1 1
5 2 2
6 2 2 CONCLUSION
7 2 3
8 2 3 i i .
9 3 3 The approach for diagnosing the condition
10 3 2 of a nodes of a metal cutting machine presented
11 3 3 in the article allows one to determine node state
12 3 3 by indirect indicators obtained on the basis of
13 4 3 information from vibration and force sensors.
14 4 4 The article describes the architecture of the pro-
15 4 4 : . o
16 ) 7] posed diagnostic model based on the bidirec-
17 5 2 tional recurrent neural networks with long short-
18 5 5 term memory. It is showed practical examples
19 5 5 of application bidirectional LSTM for estimate
20 5 5 the expected wear of the cutting tool and define
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electrical motor bearing state. The use of such
diagnostic systems as part of machine control
and monitoring systems will optimize techno-
logical processing and reduce the duration of
downtime.
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AHHOTauma. MpeacTaBaeHo onvcaHme NoaxoAa K paspaboTke npo-
FHOCTUYECKUX OMArHOCTUYECKUX MoZenei y3/10B MeTannope-
JKYLIMX CTQHKOB C YMC/IOBbIM MPOrPaMMHbIM yrpaBAeHUEM
(4MY). 3T0T Noaxon OCHOBAH HA MCMNOJIb30BAHUM HEMPOHHbIX
ceTel ¢ ABYHanpaB/ieHHON AOATOCPOYHOM KPaTKOCPOUHOW Ma-
MATblo (BILSTM). OnuncaHa apxuTeKkTypa Taknx HEMPOHHbIX ce-
Teil, MmeToa, NpeaBapuTelbHOM 06pPabOTKM AaHHbIX, 3anMcaH-
HbIX B npoLecce paboTbl cTaHKa. MpuBeaeHbl NpUmMepbl Npume-
HEHWUA METOAMKMN ANATHOCTUKN COCTOAHUA PEXYLLEro MHCTPY-
MEHTa U MNOALWMMHUKOB 3NeKTpoABuraTenien Ha crtaHke. Ons
OLLEHKM OCTaBLUErocA CPOKa CNYKObl PeXyLWEero MHCTPYMeHTa B
npeanaraemort mogenu BiLSTM ucnonbsyeTca KOCBEHHAA WH-
bopmauma — 3HaYeHUa BUMBpPaALUM U AUHAMOMETPUA MO TPEM
ocam. MNpeactaBneHo cpaBHEHUE AAHHbIX, NOJYYEHHbIX U3 AU-
arHOCTMYECKON MOAEeNU ANA OLEHKM MaKCMMAaNbHOro M3HOCA
pexyLen KPOMKU MHCTPYMEHTA, C peanbHbIMW AAHHBIMU ANA
3HaYeHU 13 TecToBoro obpasua. PaspaboTaHa AMarHocTuye-
CKasa Mofenb ANA OLLEHKM COCTOAHUA MOALWMUMHUKOB 31EKTPO-
ABUraTens Mo 3HayeHMAM BMBpauuw, KoTopasa onpeaenser
HanM4ymMe HeUCnpPaBHOCTU M OAHOFO U3 YeTbipeX KNaccoB — Ae-
beKT cenapaTopa, Wwapa, BHYTPEHHEro Ko/bLa AN Hapy»KHoe
KONbLO NoAWNNHUKA. ONTUMM3aLMA moaenn knaccudpurkatopa
npoBoAMNAach C y4eTom crneunduKn curHanos BMbpaumum npu
HaAnunn fedeKToB NOAWNMHUKOB SNEKTPOABUIaTENA MeTaN-
OpEeKYLLEero cTaHKa.
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