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Abstract. This article presents a description of approach for development the predictive di-
agnostic models of  computer numerical control (CNC) metal-cutting machine nodes. This 
approach based on using of bidirectional long short-term memory (BiLSTM) neural networks. 
The architecture of such neural networks, the method of preprocessing the data recorded 
during the operation of the machine tool are described. Examples of the application of the 
approach for diagnostics of the state of the cutting tool and bearings of electric motors on 
the machine tool are presented. To estimate the remaining lifetime of the cutting tool, the 
proposed BiLSTM model uses indirect information - vibration values and dynamometry along 
three axes. The article presents a comparison of the data obtained from the diagnostic model 
for assessing the maximum wear of the tool edge and real data for the values from the test 
sample. A diagnostic model has been developed to assess the state of the bearings of an 
electric motor by vibration values, which determines the presence of a malfunction and one 
of four classes - a defect in the cage, ball, inner ring or outer ring of the bearing. The optimi-
zation of the classifier model was carried out taking into account the specifics of vibration 
signals in the presence of defects in the bearings of the electric motor of a metal-cutting 
machine. 

Key word: metal-cutting machining; diagnostic; cutting tool state; cutting tool wear; bear-
ings state; deep neural networks; long short-term memory; neural networks; monitoring sys-
tem; predictive diagnostic.  

 
1 INTRODUCTION 

 
Timely determination of the condition of the 

equipment and its maintenance has been and re-
mains an important task in any production. 
Moving to the concept of Industry 4.0 and digi-
tal factories leads to the fact that during the op-
eration of equipment, huge amounts of data are 
stored [1].  

                                                 
This work was supported by the Ministry of Education of 
the Russian Federation, project 0838-2020-0006. "Fun-
damental study of new principles for the creation of prom-

It should be noted that the operation of the 
same type of equipment allows using the accu-
mulated information not only for analyzing the 
technological and economic indicators of the ef-
ficiency of a particular type of machine tool [2], 
but also for the automatic determination of pre-
defect states and generation of such software 
blocks for integration into the control system of 
a specific machine tool. 

ising electromechanical energy converters with charac-
teristics above the world level, with increased efficiency 
and minimum specific indicators, using new highly effi-
cient electrotechnical materials." 
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There are a number of works devoted to the 

development of diagnostic models based on var-
ious types of neural networks for determining 
the state of nodes of CNC machines.  

Most of the approaches are based on deter-
mining the state of any machine tool unit based 
on operational vibrometric information and 
other time  signals. 

For example, in a number of works exam-
ples of determining the state of a cutting tool of 
a CNC machine tool are presented using neural 
networks with long short-term memory [3–5], 
convolutional neural networks [6–7], fuzzy neu-
ral networks [8].  

There are also works devoted to the determi-
nation of bearing defects in electric motors of 
CNC machine tools.  

In this work we show approach to use deep 
learning to develop diagnostic models of a CNC 
machine tool based on bi-directional LSTM. 
 

APPROACH BASED ON BILSTM 
NEURAL NETWORKS. BIDIRECTIONAL 

LSTM 
Recurrent neural networks with long short-

term memory (LSTM) [9] are well suited for 
solving the task of classifying and predicting the 
time series in cases where the boundaries of 
events in the studied system are not strictly de-
fined and the dependence of some events on oth-
ers is separated by a certain time interval.  

LSTM is able to memorize dependencies, 
both for a short period and for a long period due 
to the inclusion of “forgetting gates” in its com-
position.  

One node of such a neural network is a unit 
that includes several gates, each of which per-
forms its function.  

A graphical representation of the architec-
ture of the one unit of LSTM presented in Fig. 1. 

At each time step t in the LSTM, the hidden 
state ht is updated with current data, the hidden 
state at the previous time step ht-1, the input gate 
it, the forgetting gate f t, output gate ot and 
memory cell ct. 

The update process is performed according 
to the system of equations (1). 

 
 

 
 

Fig. 1. Architecture of the one unit of LSTM 
 

it = σ�Wixt + Viht-1 + bi�, 

f t = σ�W fxt + V fht-1 + b f�, 

 ot = σ�Woxt + Voht-1 + bo�,            (1) 

ct = f t⊙ct-1 + it⊙ tanh�Wcxt + Vcht- 1+ bc� , 

ht = ot⊙ tanh(ct) , 

where the model parameters, including 
W ∈ Rd×k, V ∈ Rd×d, as well as b ∈ Rd are con-
stant for all stages of the model’s work and get 
values during model training, σ is the sigmoidal 
activation function, ⊙ stands for the Hadamard 
product, and k is the hyperparameter represent-
ing the dimension of hidden vectors.  

Thus, the system of equations (1) determines 
the function of the hidden layer H. 

LSTM is designed directly for processing 
serial data expressed as a time series.  

In addition, the output signal at the final time 
stage is used to predict the output signal on the 
linear regression layer, as shown in the equa-
tion (2). 

                    y�i = W rhi
T                                      (2) 

where W r∈ Rk×z and z is the dimension of the 
output of the entire model. To train the model, 
the predicted value of the target value y� is com-
pared with the true value of the target value y, 
and the mean-squared error is calculated as the 
loss function (3). 

MSE  = 1
n

∑ (y�i-yi)
2                       n

i =1  (3) 

where n is the size of the training sample. 
The disadvantage of simple LSTM is the fix-

ation of the considered values of time series only 
in the opposite direction - from the current state 
to the initial one.  
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When diagnosing the state of complex ob-
jects, serial data from sensors have stable time 
dependences and it makes sense when building 
models to take into account not only the direct 
dependence of the value, but also the inverse.  

To solve this problem, a bidirectional LSTM 
is used. Bidirectional LSTM [10] are able to 
process input time series data in two directions - 
forward and reverse (each direction has its own 
hidden layer of a neural network), and then 
transmit their output layer of linear regression.  

The following system of equations (4) and 
(5) determine the corresponding function of the 
hidden layer, the signs → and ← denote the di-
rect and reverse processes. 

Thus, the system of equations (4) character-
izes the hidden layer for the direct LSTM. 

𝚤𝚤𝑡𝑡 = σ�𝑊𝑊���⃗ 𝑖𝑖�⃗�𝑥𝑡𝑡 + 𝑉𝑉�⃗ 𝑖𝑖ℎ�⃗ 𝑡𝑡−1 + 𝑏𝑏�⃗ 𝑖𝑖�, 
𝑓𝑓𝑡𝑡 = σ�𝑊𝑊���⃗ 𝑓𝑓�⃗�𝑥𝑡𝑡 + 𝑉𝑉�⃗ 𝑓𝑓ℎ�⃗ 𝑡𝑡−1 + 𝑏𝑏�⃗ 𝑓𝑓�, 

�⃗�𝑜𝑡𝑡 = σ�𝑊𝑊���⃗ 𝑜𝑜�⃗�𝑥𝑡𝑡 + 𝑉𝑉�⃗ 𝑜𝑜ℎ�⃗ 𝑡𝑡−1 + 𝑏𝑏�⃗ 𝑜𝑜�,               (4) 
𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝚤𝚤𝑡𝑡

⊙ tanh�𝑊𝑊���⃗ 𝑐𝑐�⃗�𝑥𝑡𝑡 + 𝑉𝑉�⃗ 𝑐𝑐ℎ�⃗ 𝑡𝑡−1 + 𝑏𝑏�⃗ 𝑐𝑐�, 
ℎ�⃗ 𝑡𝑡 = �⃗�𝑜𝑡𝑡 ⊙ tanh(𝑐𝑐𝑡𝑡) 

The system of equations (5) characterizes 
the hidden layer for the inverse LSTM. 

�⃖�𝚤𝑡𝑡 = σ��⃖�𝑊���𝑖𝑖�⃖�𝑥𝑡𝑡 + �⃖�𝑉�𝑖𝑖ℎ⃖�𝑡𝑡−1 + �⃖�𝑏�𝑖𝑖�, 
𝑓𝑓𝑡𝑡 = σ��⃖�𝑊���𝑓𝑓�⃖�𝑥𝑡𝑡 + �⃖�𝑉�𝑓𝑓ℎ⃖�𝑡𝑡−1 + �⃖�𝑏�𝑓𝑓�, 

�⃖�𝑜𝑡𝑡 = σ��⃖�𝑊���𝑜𝑜�⃖�𝑥𝑡𝑡 + �⃖�𝑉�𝑜𝑜ℎ⃖�𝑡𝑡−1 + �⃖�𝑏�𝑜𝑜�,                (5) 
𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + �⃖�𝚤𝑡𝑡

⊙ tanh��⃖�𝑊���𝑐𝑐�⃖�𝑥𝑡𝑡 + �⃖�𝑉�𝑐𝑐ℎ⃖�𝑡𝑡−1 + �⃖�𝑏�𝑐𝑐�, 
ℎ⃖�𝑡𝑡 = �⃖�𝑜𝑡𝑡 ⊙ tanh(𝑐𝑐𝑡𝑡). 

Then the full representation of the hidden 
layer of bidirectional LSTM is the concatenation 
of the vectors of the direct and reverse pro-
cesses (6). 

                       ℎ𝑡𝑡 = ℎ�⃗ 𝑡𝑡 ∙ ℎ⃖�𝑡𝑡                           (6) 
 

DATA COLLECTION  
AND PREPROCESSING 

 

In the course of technological processing by 
CNC machines, information about the operating 
modes of the machine is accumulated - the 
workpiece being processed, the frequency of ro-
tation of the machine units, the processing time 
and time series value information - vibrometry, 
electrical parameters, etc. The amount of time 

value information depends on the equipment of 
the machine with sensors. All received infor-
mation is accumulated in a single enterprise-
level database. Also in this database, protocols 
are recorded for the failure of machine units, re-
placement of consumables and repairs. All rec-
orded time value information from the sensors is 
stored in two forms - raw, that is, directly the 
values recorded from the sensors and normal-
ized [11]. 

Data normalization is performed according 
to equation (7). 
                     𝑣𝑣𝑛𝑛𝑖𝑖 =  𝑣𝑣𝑖𝑖

𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚−𝐻𝐻𝑚𝑚𝑖𝑖𝑚𝑚
                         (7) 

where 𝑣𝑣𝑛𝑛𝑖𝑖 is normalized value, 𝑣𝑣𝑖𝑖 – real value 
from the sensor, 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐻𝐻𝑚𝑚𝑖𝑖𝑛𝑛 – upper and 
lower measurement limits of the sensor. 
 

DIAGNOSTIC OF CUTTING  
TOOL STATE 

 
We used the results of metal processing on a 

high-speed CNC machine RodersTech 
RFM760 [12] (Fig. 2) as input data for the de-
velopment of diagnostic models of the state of 
the cutting tool.  

 

 
 

Fig. 2. CNC machine Roders Tech RFM760 
 

The machine is additionally equipped with 
vibration acceleration sensors for recording vi-
bration values along three axes and a three-axis 
platform dynamometer installed between the 
processing table and the workpiece to measure 
the values of cutting forces. 
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The cutting tool is a tungsten carbide cutter 

with three flutes. The amount of tool wear was 
measured using a LEICA MZ12 microscope 
[13]. Stainless steel of hardness 52HRC [14] 
was used as the material to be processed. The 
spindle rotation speed is 10400 min-1; feed 
speed – 1555 mm / min; radial cutting depth (Y-
axis) – 0.125 mm; axial cutting depth (Z-axis) – 
0.2 mm. Data from vibration acceleration sen-
sors and a dynamometer were recorded with a 
sampling rate of 50 kHz. CNC machine pro-
cessing was carried out using 6 cutting tools. 
During processing, for each tool many times 
(more than 300 times for each tool), data from 
vibration and force sensors and the total amount 
of wear of each cutting edge of the tool after the 
next milling transition are recorded. Milling 
transitions were carried out with the same cut-
ting length, that is, the cutting path was a con-
stant. 

Fig. 3 shows the dependence of the wear 
value of each cutting edge for one of the cutting 
tools with an increase of milling transitions. 

 
Fig. 3. Dependence of the wear value of each cutting 

edge for one of the cutting tools with an increase 
 of milling transitions 

DEVELOPMENT OF A DIAGNOSTIC 
MODEL TO PREDICT THE AMOUNT  

OF TOOL WEAR 
 

The task of assessing wear is formulated as 
follows: from the values from the vibration and 
force sensors, it is necessary to estimate how 
many more processing transitions it is possible 
to carry out using the cutter – the remaining life-
time. The restrictions – the cutter is considered 
suitable for further processing if the wear of any 
of the cutting edges does not exceed the value of 
165*10-3 mm. 

Equation (8) is the function of evaluation the 
predicted value of diagnostic models. 

𝑆𝑆(𝑑𝑑) = �𝑒𝑒−𝑑𝑑/10 − 1, 𝑖𝑖𝑓𝑓 𝑑𝑑 < 0
𝑒𝑒𝑑𝑑/4.5 − 1, 𝑖𝑖𝑓𝑓 𝑑𝑑 ≥ 0

        (8) 

𝑑𝑑 = 𝑐𝑐𝑀𝑀 − 𝑐𝑐𝐹𝐹 

where cM is the residual life value predicted by 
the model, cF is the actual residual life value, d 
is the model prediction error. It should also be 
noted that the evaluation function is set in such 
a way that an overestimated estimate of the re-
sidual life has a greater exponential penalty [8]. 

The experimental results are divided into 
two main sets – the data obtained during pro-
cessing by three cutting tools were used in the 
training of the diagnostic model; data obtained 
during processing by the other three cutting 
tools were used to test the final model. Training 
and testing of diagnostic models were carried 
out using the Keras package [15]. 

The bidirectional LSTM includes two 
LSTMs (100 neurons in the hidden layer and 1 
neuron in the output), differing in the direction 
of the input time series and a fully connected 
layer to combine the results with one output neu-
ron. 

Fig. 4 shows the resulting dependences of 
the wear (maximum wear value of any edge) of 
the cutting on the number of milling transitions, 
obtained from the actual data (real value) and 
wear values predicted by the diagnostic model 
based on the bidirectional LSTM for one of the 
test cutters. Dependence deviations are within 
2.5%. 

 

 
Fig. 4. Real wear value of cutting edge and the value 

predicted by the bi-directional LSTM diagnostic model 
 

Therefore, the proposed diagnostic model 
based on the bidirectional LSTM quite accu-
rately determines the value of wear according to 
information obtained from vibration and force 
sensors and can be used to assess the wear of a 
cutting tool for operational use of the CNC ma-
chine. 
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DEVELOPMENT OF A DIAGNOSTIC 
MODEL FOR DETERMINING A DEFECT 

IN THE BEARING OF THE MACHINE 
SPINDLE MOTOR 

 

Bearing defects occur at characteristic fre-
quencies, some of which are associated with its 
geometric parameters, while others are purely 
random. High frequency bearing vibrations are 
irregular or random in nature. The dependences 
of such vibrations obtained using a vibration an-
alyzer make it possible to evaluate fluctuations 
or “jumps” in amplitude and frequency. Such 
phenomena can be explained by examining the 
forces generated by bearing defects. 

   A defective bearing can generate vibration 
of different types of frequencies, including at 
natural frequencies [16]. Impact interaction be-
tween bodies and raceways of a bearing excites 
vibrations of machine elements and bearing ele-
ments at natural frequencies. Each element dur-
ing shock exposure is excited at its own fre-
quency. Bearing defects act by shock pulses on 
various parts of the bearing, causing them to vi-
brate in their own modes of vibration. 

   The manifestation of the eigenfrequencies 
of the bearing elements is closely related to rotor 
frequencies. But unlike frequencies that are 
multiples of the rotational frequency, vibration 
at natural frequencies is almost always gener-
ated by several different bearing elements that 
generate several different frequencies of differ-
ent amplitudes. Bearing defects can be divided 
into several types, depending on the type of 
wear [17]: 

 
defect of the cage of bearing  

𝐹𝐹 =  𝐷𝐷𝑖𝑖
𝐷𝐷𝑖𝑖+𝐷𝐷𝑜𝑜

×𝑅𝑅𝑅𝑅𝑅𝑅; 
defect of the ball  

𝐹𝐹 =  𝐷𝐷𝑜𝑜
𝐷𝐷𝑏𝑏

× 𝐷𝐷𝑖𝑖
𝐷𝐷𝑖𝑖+𝐷𝐷𝑜𝑜

×𝑅𝑅𝑅𝑅𝑅𝑅; 
defect of the inner ring  

𝐹𝐹 =  𝐷𝐷𝑜𝑜
𝐷𝐷𝑖𝑖+𝐷𝐷𝑜𝑜

×𝑅𝑅×𝑅𝑅𝑅𝑅𝑅𝑅; 
outer ring defect  

𝐹𝐹 =  𝐷𝐷𝑖𝑖
𝐷𝐷𝑖𝑖+𝐷𝐷𝑜𝑜

×𝑅𝑅×𝑅𝑅𝑅𝑅𝑅𝑅. 
Where: Di is the diameter of the inner ring, Do 
is the diameter of the outer ring, Db is the diam-
eter of the ball, M is the number of rolling bod-
ies, RPM is the shaft rotation frequency, F is the 
frequency of the defect. 

The amplitude-frequency characteristics are 
obtained in the presence of various types of de-
fects (5 classes). The initial sample is divided in 
a 60/40 ratio for each type of defect, respec-
tively, into the training and verification ones: 10 
different cases of presence of each of the defects 
were recorded, 6 of them were trained in the 
neural network, and 4 were tested. This data set 
allowed us to obtain more accurate results and 
avoid random coincidences. For the classifica-
tion of these sequences of frequency and ampli-
tude, a recurrent neural network with long short-
term memory was used. To speed up learning on 
large data sets, we used the distribution of cal-
culations and data among the processor cores 
and the graphics processor. 

The LSTM performs additive interactions 
that can help improve the gradient flow over 
long sequences during training. Each defect is 
represented as an array of one line, in which the 
obtained values of the amplitudes are recorded 
in a row. The result is an even larger array of 50 
such lines. During training, by default, the soft-
ware breaks the training data into mini-lots and 
completes the sequences so that they have the 
same length. Too much filling can have a nega-
tive impact on network performance. In order to 
avoid adding too many indents during the train-
ing process, it is necessary to sort the training 
data by the length of the sequence so that they 
have the same length.The initial data of the fre-
quency response array were sorted by the length 
of the sequence. A histogram of sorted data 
lengths is shown in the Fig. 5. 

 

 
 

Fig. 5. The histogram of sorted data 
 

The architecture of the BiLSTM is defined. 
The size of the input data is set, which will be a 
sequence of size 1 (the size of the input data by 
the number of features). The bidirectional layer  
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of the BiLSTM with 100 hidden nodes and an 
out-put representing the last element of the se-
quence is specified. The network also includes a 
fully bonded size 4 layer, followed by a softmax 
layer and a classification layer 

The neural network for detecting and classi-
fying bearing defects as a result has 5 layers. 

The first layer is the sequence input layer. 
The second Bi-Directional LSTM Level 
(BiLSTM) studies the bi-directional long-term 
relationships between time series time steps or 
sequence data.  

These dependencies can be useful when it is 
necessary for the network to learn from the com-
plete time series at each time step. The third 
fully connected layer multiplies the input signal 
with a weight matrix, and then adds a dis-place-
ment vector. The fourth layer of softmax is an 
output block activation function. For classifica-
tion tasks, the softmax layer should follow the 
fully connected layer. Finally, the fifth output 
layer is the classification layer, which computes 
the cross-entropy loss for multiclass classifica-
tion problems with mutually exclusive classes. 
This loss is a measure of the discrepancy be-
tween the true value of the estimated parameter 
and the parameter estimate. The standard 
method for training neural networks is the 
method of stochastic gradient descent (SGD). 
However, it can diverge or converge very slowly 
if the training step is not tuned accurately 
enough. Therefore, there are many alternative 

methods to accelerate the convergence of learn-
ing and save the user from the need to carefully 
configure hyperparameters. 

 These methods often calculate gradients 
more efficiently and adaptively change the iter-
ation step. One such method is the adaptive in-
ertia method (Adam). The Adam solver was 
used as a learning function, the gradient thresh-
old was set to 1, and the maximum number of 
epochs was 200. The sequence was added to the 
maximum length. To keep the data sorted by the 
length of the sequence, their mixing is prohib-
ited.Neural network training completed. In the 
learning process, a so-called learning curve is 
obtained (expresses the accuracy of the net-
work), which tends to 100% with an increase in 
the number of iterations. A curve of the number 
of loss-classification errors is also obtained. 
Graphs of both curves are shown in the fig. 6. 

From the graph in figure 6 it can be seen that 
after about the 180th iteration, accuracy has an 
unchanged value, which suggests that 200 itera-
tions are enough for learning. Thus, the neural 
network is trained at 60% of the sample. 

To determine the classification accuracy 
 value, 40% of the sample was used. Sequence 
control data is loaded as an XTest array. The 
YTest categorical tag vector contains 4 instances 
of each defect.The neural network model was 
trained using mini-series of sequences of the 
same length. The control data must be organized 
in the same way. Sorted test data by sequence 

Fig. 6. Learning curve and loss-classification errors curve 
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length. The classification of defects on the test 
data set and the calculation of the classification 
accuracy value are performed. YPred is a cate-
gorical label vector predicted by the neural net-
work model. By comparing the YPred vector 
with the YTest vector, the accuracy of neural net-
work classification is calculated. After obtaining 
the classification accuracy values, the values of 
YPred tags are analyzed. Their comparison with 
the categorical vector of labels YTest, which was 
set during the verification of the neural network, 
showed which defects were identified correctly, 
and which were difficult to identify. The table 1 
shows the results of comparing the given control 
values YTest and the obtained YPred. The table 
1 shows that 14 out of 20 YPred values coincide 
with the YTest control values, which ultimately 
gives about 70% accuracy. 

The defect of the separator is determined 
with 100% accuracy, the defect of the ball with 
75% accuracy, and the defect of the inner ring 
and the outer with 50% accuracy. The results for 
defects of the separator and the ball can be con-
sidered satisfactory, since in most cases the pre-
dicted data are the same. 50% coincidence of de-
fects of the outer and inner rings can be ex-
plained by the similarity of the types of these de-
fects, which is also reflected in the nature of the 
noise introduced into the signal by these defects. 

Table 1  
Accuracy of initial bearing state diagnostic model 

 

№ YTest YPred 
1 1 1 
2 1 1 
3 1 1 
4 1 1 
5 2 2 
6 2 2 
7 2 3 
8 2 3 
9 3 3 
10 3 2 
11 3 3 
12 3 3 
13 4 3 
14 4 4 
15 4 4 
16 4 4 
17 5 2 
18 5 5 
19 5 5 
20 5 5 

As a result, it was found that the designed 
bidirectional recurrent neural network with long 
short-term memory is a classifier capable of de-
termining the presence and class of a bearing de-
fect by its amplitude-frequency characteristics 
of vibration signals with an accuracy of about 
70%.  

It is noted that the greatest probability of a 
diagnostic model error occurs when determining 
whether a defect belongs to the inner or outer 
bearing ring. With this in mind, when introduc-
ing a diagnostic model into the machine control 
and monitoring system, it was decided to form a 
single defect class - “defect of the inner or outer 
bearing ring”. Combining these defects into a 
single class is possible because from the techno-
logical point of view, the consequences of the 
transition from a pre-defect state to an accident 
are the same - destruction of the bearing body. 
The combination of these two classes of defects 
in 1 made it possible to increase the accuracy of 
the model by 10%. 

The result of the development and subse-
quent optimization of the structure of the diag-
nostic model of bearings is presented in the  
table 2. 

 
Table 2  

Accuracy of bearing state diagnostic models  
after optimization 

 
Iteration Defect classes 

count 
Accuracy 

1 5 75% 
40 5 75.4% 
43 4 85.7% 
102 4 91.9% 

 
CONCLUSION 

 

The approach for diagnosing the condition 
of a nodes of a metal cutting machine presented 
in the article allows one to determine node state 
by indirect indicators obtained on the basis of 
information from vibration and force sensors. 
The article describes the architecture of the pro-
posed diagnostic model based on the bidirec-
tional recurrent neural networks with long short-
term memory. It is showed practical examples 
of application bidirectional LSTM for estimate 
the expected wear of the cutting tool and define 
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electrical motor bearing state. The use of such 
diagnostic systems as part of machine control 
and monitoring systems will optimize techno-
logical processing and reduce the duration of 
downtime. 
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Заголовок: Применение нейронных сетей LSTM для диагно-
стики состояния узлов металлорежущих станков. 
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ного авиационного технического университета), т. 3,  
№ 2 (6), стр. 26–34, 2021. ISSN 2686-7044 (онлайн), ISSN 
2658-5014 (печатный вариант). 

Аннотация. Представлено описание подхода к разработке про-
гностических диагностических моделей узлов металлоре-
жущих станков с числовым программным управлением 
(ЧПУ). Этот подход основан на использовании нейронных 
сетей с двунаправленной долгосрочной краткосрочной па-
мятью (BiLSTM). Описана архитектура таких нейронных се-
тей, метод предварительной обработки данных, записан-
ных в процессе работы станка. Приведены примеры приме-
нения методики диагностики состояния режущего инстру-
мента и подшипников электродвигателей на станке. Для 
оценки оставшегося срока службы режущего инструмента в 
предлагаемой модели BiLSTM используется косвенная ин-
формация – значения вибрации и динамометрия по трем 
осям. Представлено сравнение данных, полученных из ди-
агностической модели для оценки максимального износа 
режущей кромки инструмента, с реальными данными для 
значений из тестового образца. Разработана диагностиче-
ская модель для оценки состояния подшипников электро-
двигателя по значениям вибрации, которая определяет 
наличие неисправности и одного из четырех классов – де-
фект сепаратора, шара, внутреннего кольца или наружное 
кольцо подшипника. Оптимизация модели классификатора 
проводилась с учетом специфики сигналов вибрации при 
наличии дефектов подшипников электродвигателя металл-
орежущего станка. 

Ключевые слова: металлорежущая обработка; диагностиче-
ский; состояние режущего инструмента; износ режущего 
инструмента; состояние подшипников; глубокие нейрон-
ные сети; долговременная кратковременная память; 
нейронные сети; Система наблюдения; прогностическая 
диагностика. 
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