Краткий анализ методов Deep Learning для распознавания эмоционального состояния человека для принятия решений
Аннотация
Ключевые слова
Литература
[Бог21] Богданова Д. Р. Оценка степени удовлетворенности клиентов сферы услуг на основе учета их эмоционально окрашенной информации // СИИТ. 2021. Т. 3, № 3(7). С. 72-81. DOI 10.54708/26585014_2021_33772. EDN NBWLUH. [[ Bogdanova D. R. “Assessing the degree of satisfaction of customers in the service sphere based on their emotionally colored information” // SIIT. 2021. Vol. 3, No. 3(7), pp. 72-81. DOI 10.54708/26585014_2021_33772. EDN NBWLUH. (In Russian). ]]
[Жум23] Жумажанова С. С., Сулавко А. Е., Ложников П. С. Распознавание психофизиологического состояния субъектов-операторов на основе анализа термографических изображений лица с применением сверточных нейронных сетей // СИИТ. 2023. Т. 5, № 2(11). С. 41-55. EDN NNZWLV. [[ Zhumazhanova S. S., Sulavko A. E., Lozhnikov P. S. “Recognition of the psychophysiological state of operator subjects based on the analysis of thermographic facial images using convolutional neural networks” // SIIT. 2023. Vol. 5, No. 2(11), pp. 41-55. EDN NNZWLV. (In Russian). ]]
[Лат24] Латкин И. С., Богданова Д. Р., Ахметвалеев Р. Р. Разработка программного обеспечения для построения карт эмоций: методологии моделирования и сценарии использования // СИИТ. 2024. Т. 6, № 2(17). С. 39-49. EDN JHOJSU. [[ Latkin I. S., Bogdanova D. R., Akhmetvaleev R. R. “Development of software for constructing emotion maps: modeling methodologies and usage scenarios” // SIIT. 2024. Vol. 6, No. 2(17), pp. 39-49. EDN JHOJSU. (In Russian). ]]
[Мав23] Мавлютова Р. Р., Богданова Д. Р. Анализ эффективности рекламной кампании на основе учета эмоционального отклика аудитории с применением аффективных вычислений // СИИТ. 2023. Т. 5, № 2(11). С. 11-17. EDN BBXINF. [[ Mavlyutova R. R., Bogdanova D. R. “Analysis of the effectiveness of an advertising campaign based on the emotional response of the audience using affective computing” // SIIT. 2023. Vol. 5, No. 2(11), pp. 11-17. EDN BBXINF. (In Russian). ]]
[Саз23] Сазонова Е. Ю., Сметанина О. Н., Журавлева К. И., Юлаев Р. С. Интеллектуальная СППР при управлении психофизическим состоянием человека // СИИТ. 2023. Т. 5, № 6(15). С. 38-49. EDN JFLRCX. [[ Sazonova E. Yu., Smetanina O. N., Zhuravleva K. I., Yulaev R. S. “Intelligent decision support system for managing the psychophysical state of a person” // SIIT. 2023. Vol. 5, No. 6(15), pp. 38-49. EDN JFLRCX. (In Russian). ]]
[Cui20] Cui H., Liu A., Zhang X., Chen X., Wang K., Chen X. “EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network” // Knowledge-Based Systems, 2020. V. 205, 106243. DOI 10.1016/j.knosys.2020.106243.
[Dom20] Doma V., Piruz M. “Comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals” // Big Data. 2020. No. 7 (18), pр. 289-307. DOI 10.1186/s40537-020-00289-7. EDN AKLZMI.
[Don21] Dong S., Wang P., Abbas K. “A survey on deep learning and its applications” // Computer Science Review. 2021. V. 40, pр. 10037-10039. DOI 10.1016/j.cosrev.2021.100379. EDN NEFEQG.
[Fio20] Fiorini L., Mancioppi G., et al. “Unsupervised emotional state classification through physiological parameters for social robotics applications” // Knowledge-Based Systems. 2020. Vol. 190, pр. 105217. DOI 10.1016/j.knosys.2019.105217. EDN WINWSU.
[Gar19] Garg A., Badi A. K., Sunkar R. K. “A combined LSTM model for classifying emotions using EEG signals” // 2019 Int. Conf. on Data Science and Engineering (ICDSE). IEEE. 2019, no. 19, pp. 139-143. DOI 10.1109/ICDSE47409.2019.8971484.
[Gre20] Greche L., Akil M., Kachouri R., Es-Sbai N. “A new pipeline for the recognition of universal expressions of multiple faces in a video sequence” // Journal of Real-Time Image Processing. 2020. V. 17, no. 5, pp. 1389-1402. DOI 10.1007/s11554-019-00896-5. EDN QDYIYP.
[Gua21] Guanghui C., Xiaoping Z. “Multimodal emotion recognition by merging correlative features of speech and vision” // IEEE Signal Process. Lett. 2021. No. 28, pр. 533–537. DOI 10.1109/LSP.2021.3055755.
[Has20] Hassouneh A. M., Mutawa M. M. “Development of a real-time emotion recognition system using facial expressions and EEG based on machine learning methods and deep neural networks” // Computer Science in Medicine Unlocked. 2020. No. 20, рp. 100372. DOI 10.1016/j.imu.2020.100372.
[Hos19] Hossein M. S., Muhammad G. “An audio-visual emotion recognition system using deep learning for a cognitive wireless environment” // IEEE Wireless. Common. 2019. No. 26, pр. 62–68. DOI 10.1109/MWC.2019.1800419.
[Hua21] Huang D., Chen S., Liu C., Zheng L., Tian Z., Jiang D. “Differences primarily in the asymmetric brain a convolutional neural network with two-hemisphere divergence for EEG emotion recognition” // Neurocomputing. 2021. No. 448, pр.140-151. DOI 10.1016/j.neucom.2021.03.105. EDN AQVZPG.
[Hus22] Hussein E. H., Hammad A., Ali A. A. “Recognition of human emotions using an EEG-based brain-computer interface using machine learning a comprehensive review” // Neural Computing and Applications. 2022. No. 34, рp. 12527-12557. DOI 10.1007/s00521-022-07292-4. EDN RBIHHD.
[Iqb21] Iqbal H. Sarker. “Deep Learning: A comprehensive overview of methods, taxonomy, applications, and research directions” // SN Computer Science. 2021. No. 2(6), pр.1–20. DOI 10.1007/s42979-021-00815-1.
[Jos20] Joshi V. M., Ghongaid R. B. “Idea: An intelligence database for emotion analysis using an EEG signal” // J King Saud Univ-Comput Inform Science. 2020. V. 20, р. 59.
[Kha20] Khare S. K., Bajaj V. “Evolutionarily optimized variational mode decomposition for emotion recognition” // IEEE Sens. J. 2020. No. 21, pр. 2035–2042. DOI 10.1109/jsen.2020.3020915. EDN YGCUXC.
[Kul21] Kulke L., Bmmmer L., Pooresmaeili A., Schacht A. “Overt and covert attention shifts to emotional faces Combining EEG, eye tracking, and a go/no-go paradigm” // Psychophysiology. 2021. V. 58, no. 8, pp. e13838. DOI 10.1111/psyp.13838. EDN HZBOIZ.
[Li20] Li I., Zhao J., Lv Z., Li J. “A method of merging medical images using deep learning” // Int. J. Kohn. Comput. Eng. 2021. No. 2, pр. 21–29. DOI 10.1016/j.ijcce.2020.12.004.
[Li22] Li C., Wang B., Zhang S., Liu Y., Song R., Cheng J., Chen X. “Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism” // Computers in Biology and Medicine. 2022. V. 143, pр.105303. DOI 10.1016/j.compbiomed.2022.105303. EDN CUAQCH.
[Liu20] Liu S., Wang H., Zhao L., Zhao J., Xin K., Wang S. “Subject-independent emotion recognition of EEG signals based on a dynamic empirical convolutional neural network” // IEEE/ACM Trans Computer Bel Bioinform. 2020. No. 20, р.26.
[Lu22] Lu X. “Emotion recognition based on deep learning and visualization of imaginative representation” // Front. Psychol. 2022. No. 12, pр. 818-833. DOI 10.3389/fpsyg.2021.818833.
[Már19] Mário W. L. Moreira, Joel J. P. C. Rodrigues, Neeraj Kumar, Kashif Saleem, Igor V. Illin. “Postpartum depression prediction through pregnancy data analysis for emotion-aware smart systems” // Information Fusion. 2019. V. 47, pp. 23-31. DOI 10.1016/j.inffus.2018.07.001. EDN VBRIAK.
[Mel20] Meluk V., Khandouzi V. “Facial emotion recognition using deep learning an overview and ideas” // Procedia Computer. Sci. 2020. No. 175, pр. 689–694. DOI 10.1016/j.procs.2020.07.101. EDN EEXIAF.
[Nta21] Ntalampiras S. “Speech emotion recognition through learning analogies” // Pattern Resin. Lett. 2021. No. 144, pр. 21–26. DOI 10.1016/j.patrec.2021.01.018. EDN IWUCPA.
[Pat20] Patel P., Thakkar A. “The growth of deep learning for computer vision applications” // Int. J. Electro. Comput. Eng. 2020. No. 10, р.538. DOI 10.11591/ijece.v10i1.pp538-548. EDN HOUXSI.
[Sak21] Sakale A., Tamar P., et al. “STM-based deep learning networks for emotion recognition using a wireless brainwave-controlled system” // Expert Systems Appl.2021. No. 173, р.114516. DOI 10.1016/j.eswa.2020.114516. EDN PGFYHX.
[Sha20] Sharma R., Pachori R.B., Sircar P. “Automated emotion recognition based on higher order statistics and deep learning algorithm” // Biomedical Signal Processing and Control. 2020. V. 58, pр.1018-1067. DOI 10.1016/j.bspc.2020.101867. EDN QQKTHF.
[Son21] Sonal Singh A., Kant C. “Face and age recognition using a three-dimensional discrete wavelet transform and a rotational local binary template using the radial basis function support vector machine” // Int. J. Electro. Eng. Educ. 2021. No. 209, pр.84-89. DOI 10.1177/0020720920988489. EDN SMRFOY.
[Var20] Varma S., Shinde M., Chavan S. S. “Analysis of PCA and LDA features for facial expression recognition using SVM and HMM classifiers” // Techno-Societal 2018 Proc. of the 2nd International Conference on Advanced Technologies for Societal Applications. 2020. V. 1, pp. 109119. DOI 10.1007/978-3-030-16848-3_11. EDN VYMQPM.
[Wu21] Wu Y., Fu S., Zhao J., Bryan C. “Powering visualization with deep learning” // IEEE Comput. Graph. Appl. 2021. No. 4.1, pр. 16–17. DOI 10.1109/mcg.2021.3102711. EDN LUMMHN.
[Yan20] Yang J., Huang X., Hongkai W., Yang X. “EEG-based emotion classification based on a bidirectional network of long-term short-term memory” // Procedia Comput Sci. 2020. No. 174, pр.491–504. DOI 10.1016/j.procs.2020.06.117. EDN NXDLPF.
[Zha20] Zhang J., Yin Z., Chen P., Nichele S. “Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review” // Information Fusion. 2020. V. 59, pp. 103-126. DOI 10.1016/j.inffus.2020.01.011. EDN KYOKJA.
Ссылки
- На текущий момент ссылки отсутствуют.
(c) 2025 Р. А. Ширинов, Л. А. Гардашова, Д. Р. Богданова