A Survey of Cloud Computing Resource Scheduling Algorithms

Rabina Bagga, Kamali Gupta

Аннотация


Обзор алгоритмов планирования ресурсов облачных вычислений

Рабина Багга, Камали Гупта

Структурная конструкция, включающая виртуальные машины, подключающиеся к поставщику облачных услуг, называется облачными вычислениями. Облачные вычисления — это новейшая тенденция, позволяющая реализовать видение ресурсов инфраструктуры. Облачные вычисления — это технологическое новшество, которое основывается на том, как вычислительные системы разрабатывают технологии, помимо использования существующих ресурсов для создания программного обеспечения. Оно основано на принципе гибкого предоставления; этот термин охватывает службы и машины, хранилища, сети и сети информационных технологий (ИТ) в целом. Облачные вычисления превратились в модель товаров и услуг.


Ключевые слова


Облачные вычисления, балансировка нагрузки, алгоритмы оптимизации, нечеткая логика.

Полный текст:

PDF (English)

Литература


[Aga18] M. Agarwal and G. M. S. Srivastava, “Genetic algorithm-enabled particle swarm optimization (PSOGA)-based task scheduling in cloud computing environment,” Int. J. Inf. Technol. Decis. Making, vol. 17, no. 4, pp. 1237-1267, Jul. 2018. DOI: 10.1142/S0219622018500244.

[Alk16] E. S. Alkayal, N. R. Jennings, and M. F. Abulkhair, "Efficient task scheduling multi-objective particle swarm optimization in cloud computing,” in Proc. IEEE 41st Conf. Local Comput. Netw. Workshops (LCN Workshops), Nov. 2016, pp. 17-24. DOI: 10.1109/LCN.2016.024.

[Aru19] A. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud computing: A literature survey,” Future Gener. Comput. Syst., vol. 91, pp. 407-415, Feb. 2019. DOI: 10.1016/j.future.2018.09.014.

[Ben18] H. Ben Alla, S. Ben Alla, A. Touhafi, and A. Ezzati, “A novel task scheduling approach based on dynamic queues and hybrid meta-heuristic algorithms for cloud computing environment,” Cluster Comput., vol. 21, no. 4, pp. 1797-1820, Dec. 2018. DOI: 10.1007/s10586-018-2811-x. EDN: WDQDYD.

[Bit18] L. F. Bittencourt, A. Goldman, E. R. M. Madeira, N. L. S. da Fonseca, and R. Sakellariou, “Scheduling in distributed systems: A cloud computing perspective,” Comput. Sci. Rev., vol. 30, pp. 31-54, Nov. 2018. DOI: 10.1016/j.cosrev.2018.08.002. EDN: CEHYCM.

[Bit18b] C. Bitsakos, I. Konstantinou, and N. Koziris, “DERP: A deep reinforcement learning cloud system for elastic resource provisioning,” in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci. (CloudCom), Dec. 2018, pp. 21-29. DOI: 10.1109/CloudCom2018.2018.00020.

[Bu19] F. Bu and X. Wang, “A smart agriculture IoT system based on deep reinforcement learning,” Future Gener. Comput. Syst., vol. 99, pp. 500-507, Oct. 2019. DOI: 10.1016/j.future.2019.04.041.

[Car19] F. Carpio, A. Jukan, R. Sosa, and A. J. Ferrer, “Engineering a QoS provider mechanism for edge computing with deep reinforcement learning,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, Dec. 2019, pp. 1-6. DOI: 10.1109/GLOBECOM38437.2019.9013946.

[Che18] M. Cheng, J. Li, and S. Nazarian, “DRL-cloud: Deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers,” in Proc. 23rd Asia South Pacific Design Autom. Conf. (ASPDAC), Jeju, South Korea, Jan. 2018,

pp. 129-134. DOI: 10.1109/ASPDAC.2018.8297294.

[Che20] M. Cheng, J. Li, P. Bogdan, and S. Nazarian, “H2O-cloud: A resource and quality of service-aware task scheduling framework for warehouse-scale data centers,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10, pp. 2925-2937, Oct. 2020. DOI: 10.1109/TCAD.2019.2930575. EDN: VGZCUB.

[Che20b] M. Cheng, J. Li, P. Bogdan, and S. Nazarian, “H2O-cloud: A resource and quality of service-aware task scheduling framework for warehouse-scale data centers,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10, pp. 2925-2937, Oct. 2020. DOI: 10.1109/TCAD.2019.2930575. EDN: VGZCUB.

[Gaz20] P. Gazori, D. Rahbari, and M. Nickray, “Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach,” Future Gener. Comput. Syst., vol. 110, pp. 1098-1115, Sep. 2020. DOI: 10.1016/j.future.2019.09.060. EDN: TYAXQA.

[Hu18] H. Hu, Z. Li, H. Hu, J. Chen, J. Ge, C. Li, and V. Chang, “Multi-objective scheduling for scientific workflow in multicloud environment,” J. Netw. Comput. Appl., vol. 114, pp. 108-122, Jul. 2018. DOI: 10.1016/j.jnca.2018.03.028.

[Li17] H. Li, J. Li, W. Yao, S. Nazarian, X. Lin, and Y. Wang, “Fast and energy-aware resource provisioning and task scheduling for cloud systems,” in Proc. 18th Int. Symp. Qua. DOI: 10.1109/ISQED.2017.7918312.

[Li18] H. Li, R. Cai, N. Liu, X. Lin, and Y. Wang, “Deep reinforcement learning: Algorithm, applications, and ultra-low-power implementation,” Nano Commun. Netw., vol. 16, pp. 81-90, Jun. 2018. DOI: 10.1016/j.nancom.2018.02.003.

[Liu17] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang, “A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Atlanta, GA, USA, Jun. 2017, pp. 372-382. DOI: 10.1109/ICDCS.2017.123.

[Lu20] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning,” Future Gener. Comput. Syst., vol. 102, pp. 847-861, Jan. 2020. DOI: 10.1016/j.future.2019.07.019. EDN: EZINJI.

[Nou19] S. M. R. Nouri, H. Li, S. Venugopal, W. Guo, M. He, and W. Tian, “Autonomic decentralized elasticity based on a reinforcement learning controller for cloud applications,” Future Gener. Compu. Syst., vol. 94, pp. 765-780, May 2019. DOI: 10.1016/j.future.2018.11.049.

[Pat17] N. Patil and D. Aeloor, "A review-different scheduling algorithms in cloud computing environment,» in Proc. 11th Int. Conf.

Intell. Syst. Control (ISCO), Coimbatore, India, Jan. 2017, pp. 182-185. DOI: 10.1109/ISCO.2017.7855977.

[Pen20] Z. Peng, J. Lin, D. Cui, Q. Li, and J. He, “A multi-objective trade-off framework for cloud resource scheduling based on the deep Q-network algorithm,” Cluster Comput., Jan. 2020, DOI: 10.1007/s10586-019-03042-9.

[Pha17] S. Phaniteja, P. Dewangan, P. Guhan, A. Sarkar, and K. M. Krishna, “A deep reinforcement learning approach for dynamically stable inverse kinematics of humanoid robots," in Proc. IEEE Int. Conf. Robot. Biomimetics (ROBIO), Macau, China, Dec. 2017, pp. 1818-1823. DOI: 10.1109/ROBIO.2017.8324682. EDN: VIKSMI.

[Qua18] L. Quan, Z. Wang, and F. Ren, “A novel two-layered reinforcement learning for task offloading with tradeoff between physical machine utilization rate and delay,” Future Internet, vol. 10, no. 7, pp. 10-60, 2018. DOI: 10.3390/fi10070060.

[Ran19] L. Ran, X. Shi, and M. Shang, “SLAs-aware online task scheduling based on deep reinforcement learning method in cloud environment,” in Proc. IEEE 21st Int. Conf. High Perform. Comput. Commun., Zhangjiajie, China, Aug. 2019, pp. 1518-1525. DOI: 10.1109/HPCC/SmartCity/DSS.2019.00209.

[Wan19] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for mobile edge computing: A deep reinforcement learning approach,” IEEE Trans. Emerg. Topics Comput., early access, Mar. 4, 2019, DOI: 10.1109/TETC.2019.2902661. EDN: WYSGAE.

[Wei19] Y. Wei, D. Kudenko, S. Liu, L. Pan, L. Wu, and X. Meng, “A reinforcement learning based auto-scaling approach for SaaS providers in dynamic cloud environment,” Math. Problems Eng., vol. 2019, pp. 1-11, Feb. 2019. DOI: 10.1155/2019/5080647. EDN: QJMPEU.

[Xia19] A. Xiao, Z. Lu, J. Li, J. Wu, and P. C. K. Hung, “SARA: Stably and quickly find optimal cloud configurations for heterogeneous big data workloads,” Appl. Soft Comput., vol. 85, Dec. 2019, Art. no. 105759. DOI: 10.1016/j.asoc.2019.105759.

[Yad17] R. Yadav and W. Zhang, “MeReg: Managing energy-SLA tradeoff for green mobile cloud computing,” Wireless Commun.

Mobile Comput., vol. 2017, pp. 1-11, Dec. 2017. DOI: 10.1155/2017/6741972.

[Yad18] R. Yadav, W. Zhang, et al., “Adaptive energy-aware algorithms for minimizing energy consumption and SLA violation in cloud computing,” IEEE Access, vol. 6, pp. 55923-55936, 2018. DOI: 10.1109/ACCESS.2018.287275.

[Yad20] R. Yadav, W. Zhang, K. Li, C. Liu, M. Shafiq, and N. K. Karn, “An adaptive heuristic for managing energy consumption and overloaded hosts in a cloud data center,” Wireless Netw., vol. 26, no. 3, pp. 1905-1919, Apr. 2020. DOI: 10.1007/s11276- 018-1874-1. EDN: BOOTKQ.




DOI: https://doi.org/10.54708/2658-5014-SIIT-2025-no3-p66

Ссылки

  • На текущий момент ссылки отсутствуют.


(c) 2025 Rabina Bagga, Kamali Gupta