Применение нейронных сетей LSTM для диагностики состояния узлов металлорежущих станков

K. A. Masalimov, R. A. Munasypov

Аннотация


Представлено описание подхода к разработке прогностических диагностических моделей узлов металлорежущих станков с числовым программным управлением (ЧПУ). Этот подход основан на использовании нейронных сетей с двунаправленной долгосрочной краткосрочной памятью (BiLSTM). Описана архитектура таких нейронных сетей, метод предварительной обработки данных, записанных в процессе работы станка. Приведены примеры применения методики диагностики состояния режущего инструмента и подшипников электродвигателей на станке. Для оценки оставшегося срока службы режущего инструмента в предлагаемой модели BiLSTM используется косвенная информация – значения вибрации и динамометрия по трем осям. Представлено сравнение данных, полученных из диагностической модели для оценки максимального износа режущей кромки инструмента, с реальными данными для значений из тестового образца. Разработана диагностическая модель для оценки состояния подшипников электродвигателя по значениям вибрации, которая определяет наличие неисправности и одного из четырех классов – дефект сепаратора, шара, внутреннего кольца или наружное кольцо подшипника. Оптимизация модели классификатора проводилась с учетом специфики сигналов вибрации при наличии дефектов подшипников электродвигателя металлорежущего станка.

Ключевые слова


металлорежущая обработка; диагностический; состояние режущего инструмента; износ режущего инструмента; состояние подшипников; глубокие нейронные сети; долговременная кратковременная память; нейронные сети; Система наблюдения; прогностическая диагностика

Полный текст:

PDF (English)

Литература


Mohammadi N., Taylor J. E. Smart city digital twins // 2017 IEEE Symposium Series on Computational Intelligence (SSCI). 2017. [ N. Mohammadi, J. E. Taylor, "Smart city digital twins", in IEEE Symposium Series on Computational Intelligence (SSCI), 2017. ]

Minaev V. Maintenance and repair strategies // Economics and life. 2013. [ V. Minaev, "Maintenance and repair strategies" in Economics and life. 2013. ]

Martínez-Arellano G., Terrazas G., Ratchev S. Tool wear classification using time series imaging and deep learning // Int. J. Adv. Manuf. Technol. 2019. 104. Pp. 3647-3662.

DOI: 10.1007/s00170-019-04090-6. [ G. Martínez-Arellano, G. Terrazas, S. Ratchev "Tool wear classification using time series imaging and deep learning", in Int. J. Adv. Manuf. Technol. 104, Pp. 3647-3662, 2019. DOI: 10.1007/s00170-019-04090-6. ]

Zhou J., Zhao X., Gao J. Tool remaining useful life prediction method based on LSTM under variable working conditions // Int. J. Adv Manuf. Technol. 2019. 104. Pp. 4715-4726. DOI: 10.1007/s00170-019-04349-y. [ J. Zhou, X. Zhao, J. Gao "Tool remaining useful life prediction method based on LSTM under variable working conditions", in Int. J. Adv Manuf. Technol. 104, Pp. 4715-4726, 2019. DOI: 10.1007/s00170-019-04349-y. ]

Remaining Life Prediction Method for Rolling Bearing Based on the Long Short-Term Memory Network / F. Wang, et al // Neural Process Lett. 2019. 50, Pp. 2437–2454. DOI: 10.1007/s11063-019-10016-w. [ F. Wang, et al ., "Remaining Life Prediction Method for Rolling Bearing Based on the Long Short-Term Memory Network", in Neural Process Lett. 50, Pp. 2437-2454. 2019. DOI: 10.1007/s11063-019-10016-w. ]

Ambadekar P. K., Choudhari C. M. CNN based tool monitoring system to predict life of cutting tool // SN Appl. Sci. 2020. 2. 860. DOI: 10.1007/s42452-020-2598-2. [ P. K. Ambadekar, C. M. Choudhari, "CNN based tool monitoring system to predict life of cutting tool", in SN Appl. Sci. 2. 860. 2020. DOI: 10.1007/s42452-020-2598-2. ]

Review of tool condition monitoring in machining and opportunities for deep learning / G. Serin et al // Int J. Adv. Manuf. Technol. 2020. 109. Pp. 953-974. DOI: 10.1007/s00170-020-05449-w. [ G. Serin, et al., "Review of tool condition monitoring in machining and opportunities for deep learning", in Int J. Adv. Manuf. Technol. 109. Pp. 953-974. 2020. DOI: 10.1007/s00170-020-05449-w. ]

Fuzzy Neural Network Modelling for Tool Wear Estimation in Dry Milling Operatio / X. Li, et al. // Annual Conference of the Prognostics and Health Management Society. 2009. [ X. Li, et al., "Fuzzy Neural Network Modelling for Tool Wear Estimation in Dry Milling Operatio" in Annual Conference of the Prognostics and Health Management Society. 2009. ]

Hochreiter S., Schmidhuber J. Long short-term memory // Neural Computation. 1997. Vol. 9, no. 8 Pp. 1735-1780. DOI: 10.1162/neco.1997.9.8.1735. [ S. Hochreiter, J. Schmidhuber, "Long short-term memory", in Neural Computation. Vol. 9, no. 8, Pp. 1735-1780. 1997. DOI: 10.1162/neco.1997.9.8.1735. ]

Graves A., Schmidhuber J., Framewise phoneme classification with bidirectional LSTM and other neural network architectures // Neural Networks. 2005. No. 18, Pp. 602-610. [ A. Graves, J. Schmidhuber, "Framewise phoneme classification with bidirectional LSTM and other neural network architectures", in Neural Networks. No. 18, Pp. 602-610 . 2005. ]

Datum unit optimization for robustness of a journal bearing diagnosis system / B. C. Jeon, et al. // Int. J. Precis. Eng. Manuf. 2015. 16. Pp. 2411-2425. DOI: 10.1007/s12541-015-0311-y. [ B. C. Jeon, et al. "Datum unit optimization for robustness of a journal bearing diagnosis system", in Int. J. Precis. Eng. Manuf. 16. Pp.2411-2425. 2015. DOI: 10.1007/s12541-015-0311-y. ]

Roders Tech RFM760. [Электронный ресурс]. URL: http://www.tritechtooling.com/ equipment/ roeders-rfm760/ (дата обращения 20.09.2020). [ Roders Tech RFM760. [Электронный ресурс]. URL: http://www.tritechtooling.com/ equipment/ roeders-rfm760/ (дата обращения 20.09.2020). ]

Leica MZ12. [Электронный ресурс]. URL: http://www.lightglassoptics.com/ Leica-MZ125-Stereomicroscope-on-A-Stand_p_103. html (дата обращения 20.09.2020). [.Leica MZ12.…[Электронный ресурс]. URL: http://www.lightglassoptics.com/Leica-MZ125-Stereomicroscope-on-A-Stand_p_103.html (дата обращения 20.09.2020)..]

William S., Javad H. Foundations of Material Science and Engineering (4th ed.). McGraw-Hill. P. 229. [ S. William, H. Javad. In Foundations of Material Science and Engineering (4th ed.). McGraw-Hill. P. 229. ]

Keras. [Электронный ресурс]. URL: https://keras.io/ (дата обращения 20.09.2020). [ Keras. [Электронный ресурс]. URL: https://keras.io/ (дата обращения 20.09.2020). ]

Method of Operational Diagnostics of Metal Cutting Machine Modules / K. A. Masalimov, et al // Proceedings - 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, SUMMA 2019. [ K. A. Masalimov, et al, "Method of Operational Diagnostics of Metal Cutting Machine Modules", in Proceedings 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, SUMMA. 2019. ]

Detection of defects in rolling bearings. [Электронный ресурс]. URL: http://www.vibration.ru/obnar_defekt.shtml (дата обращения 20.09.2020). [ Detection of defects in rolling bearings. [Электронный ресурс]. URL: http://www.vibration.ru/obnar_defekt.shtml (дата обращения 20.09.2020). ]


Ссылки

  • На текущий момент ссылки отсутствуют.


(c) 2021 K. A. Masalimov, R. A. Munasypov