
 2020. Т. 2, № 2 (4). С. 16–22

http://siit.ugatu.su
ISSN 2686-7044 (Online)

СИСТЕМНАЯ ИНЖЕНЕРИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

ISSN 2658-5014 (Print)

УДК 004.65

THE RTR PATH PLANNER FOR DIFFERENTIAL DRIVE ROBOTS

D. K ISS 1 , G. TEVESZ 2
1 domokos.kiss@aut.bme.hu, 2 tevesz@aut.bme.hu

Budapest University of Technology and Economics, Budapest, Hungary

Поступила в редакцию 21 октября 2020 г.

Abstract. Path planning among obstacles is a challenging task for nonholonomic mobile robots. One class of
the most widespread approaches for solving this are sampling-based roadmap methods. These take samples
from the configuration space and use a local planner to connect them and to build a roadmap. The resulting
path is obtained by a graph search algorithm in this roadmap. This paper presents the RTR-Planner, a sampling-
based global planning algorithm for differential drive mobile robots, based on the idea of Rapidly exploring
Random Trees (RRT). The RTR-planner builds two search trees consisting of rotation (R) and translation (T)
primitives, starting from the initial and the goal configuration. Samples are taken randomly or biased towards
passages in the free workspace. If the two trees reach each other, the resulting path can be obtained easily.
Simulation results are presented which show the effectiveness of the method even in the presence of narrow
corridors and passages.
Key words: robots; locomotion systems; algorithm; construction process, method.

INTRODUCTION

Motion planning for robots is a widely studied
field in the last decades [1]. The application of au-
tonomous mobile robots is increasingly widespread
thus planning and control of their motion in environ-
ments cluttered with obstacles is a very important
area of research. From the perspective of motion
planning, any robot can be described by its configu-
ration. For example, the configuration of a rigid mo-
bile robot moving in a planar workspace 2RW ⊂ can
be given by),,(θ= yxq , a vector of its position and
orientation in the configuration space C . The set of
not allowed configurations (e.g. because of collision
with obstacles) is called the configuration space ob-
stacle obsC , its complement is the free space

obsfree CCC \= .
The most popular locomotion systems for mo-

bile robots moving on a planar surface are based on
rolling wheels, according to their mechanical sim-
plicity and popularity among everyday vehicles.
However, the rolling without slipping constraint of
wheels induce nonholonomic kinematic constraints
which cause remarkable difficulties in the control of
these systems [2] (this can be acknowledged by an-
yone who ever tried to parallel park a car). Although

the motion control of a nonholonomic vehicle (like a
car or a differential drive robot) is a control theoretic
challenge, it is worth incorporating the knowledge
about the specific system in the path planning task as
well.

The RTR (rotate–translate–rotate) planning al-
gorithm described in this paper was motivated by the
differential drive, which is one of the most popular
wheel arrangements among mobile robots. Its kine-
matic motion equation looks like as follows:

b

rl

rl

rl

w
vv

vvy

vvx

+
=θ

+
⋅θ=

+
⋅θ=







2
)sin(

2
)cos(

 (1)

where lv and rv are the velocities of the left and
right wheels, respectively, treated as input variables
of the system, and bw is the wheelbase of the robot.
This arrangement induces a nonholonomic kine-
matic constraint, namely the robot can move only in
the direction of its actual heading, however, it allows
the robot to turn in place. This ensures a great mo-
bility e.g. compared to a steered, car-like robot.

mailto:tevesz@aut.bme.hu

 D .Kiss, G.Tevesz ● Th e RTR Path Plann er … 19

Based on this property, a differential drive robot can
move in any direction provided that it has enough
space to turn to that direction. It follows that if the
robot can be virtually replaced by a disk of its turn-
ing radius, then any geometric path planned for a ho-
lonomic (non-constrained), circle-shaped robot of
the same size can be followed using differential
drive as well. Unfortunately this simplification is
useless if the environment contains narrow corridors
and passages (see Fig. 1). Our currently proposed
RTR planning method does not need the above men-
tioned simplification, because it takes the exact
shape of the robot into account. The RTR-planner
can be treated as an adaptation and modification of
the Rapidly exploring Random Trees (RRT) ap-
proach [3] to the case of polygonal-shaped differen-
tial drive robots moving among polygonal obstacles.

Fig. 1. A differential drive robot can be replaced by a
holonomic disk of its turning radius for path planning.

Although, this leads to problems when narrow corridors
have to be passed

The remainder of the paper is organized as fol-
lows. An overview of planning approaches for non-
holonomic robots is given in Section 2, including the
RRT approach which served as inspiration for the in-
vention of our method. In Section 3 we explain our
RTR planning algorithm in detail. To show the ef-
fectiveness of the planner, simulation results are pre-
sented in Section 4. Conclusions and directions of
future work are summarized in Section 5.

NONHOLONOMIC PLANNING AMONG
OBSTACLES

Generating feasible paths for nonholonomic ro-
bots is not trivial even in the absence of obstacles.
Algorithms that can solve this are called local plan-
ners or steering methods. In case of specific wheeled
robots exact methods exist for computing optimal
(e.g. shortest length) local paths. These include car-
like robots moving forward (Dubins-car [4]) or both
forward and backward (Reeds–Shepp-car [5, 6]),
and robots equipped with differential drive [7].

However, a useful planning algorithm has to
generate paths in the presence of obstacles while tak-

ing into account the kinematic constraints of the ve-
hicle as well. To the best of our knowledge, there is
no general optimal solution available for this prob-
lem. For differential drive, an optimal approach is
presented in [8], but only for disk-shaped robots.
Thus generally, if obstacles are present, one should
be satisfied with a feasible solution which is not nec-
essarily optimal. The majority of planning algo-
rithms delivering a feasible solution can be grouped
into two main categories. The first category consists
of techniques that approximate a not necessarily fea-
sible but collision-free initial geometric path by a se-
quence of feasible local paths obtained by a steering
method [9, 10]. The second category involves sam-
pling-based roadmap methods, which build a graph
in order to capture the topology of freeC and use lo-
cal steering methods to connect the graph nodes.

SAMPLING-BASED ROADMAP METHODS

A good survey of sampling-based planning
methods can be found in [11]. The majority of these
are based on random sampling of the configuration
space. Their popularity arise from the fact that they
do not require an explicit representation of obsC ,
only a black-box collision detector module which
can tell whether a given configuration is in obsC or
not. These methods proved to be successful in many
planning problems, including high-dimensional con-
figuration spaces. For example, the Probabilistic
Roadmap Method (PRM) [12] samples the configu-
ration space in advance and tries to connect the sam-
ples using collision-free local paths in order to obtain
a roadmap (preprocessing phase). In the next step the
initial and goal configurations are connected to the
roadmap and a solution path is obtained by a graph
search algorithm (query phase). As the prepro-
cessing phase usually requires great computational
effort, this approach is well-suited to multiple query
problems in a static environment.

For single-query problems, the Rapidly explor-
ing Random Trees (RRT) approach is better suited
[3]. The main idea of it is to incrementally build a
search tree starting from the initial configuration in
a way that the tree covers the free space rapidly and
with gradually increasing resolution.

RAPIDLY EXPLORING RANDOM TREES

The basic RRT construction process can be seen
in Algorithm 1. The building of the tree T starts
from the initial configuration initq . RAN-
DOM_CONFIG returns a random configuration

randq from C (sampling step).

ИНФ ОРМ АЦИО Н Н ЫЕ Т ЕХ Н ОЛОГ ИИ 18

Algorithm 1.
The basic RRT construction algorithm [13]

1. ()initqT init.
2. for all 1=k to K do
3. ←randq RANDOM_CONFIG()
4. ←nearq NEAREST_NEIGHBOR ()Tqrand ,
5. if ()newnearrand qqqT ,,,CONNECT then
6. ()newqT vertexadd_.
7. ()newnear qqT ,add_edge.
8. end if
9. end for
10. return T

NEAREST_NEIGHBOR determines the nearest
configuration nearq in the tree, according to a metric
defined on the configuration space (vertex selection
step). It depends on the implementation if this func-
tion can return only graph vertices or inner configu-
rations of edges as well. CONNECT tries to connect

nearq to randq by interpolating between them (tree
extension step). More versions of this function are
proposed by the authors of RRT. The first version
extends nearq only by a fixed q∆ amount towards

randq to obtain newq (let us call this version EX-
TEND instead of CONNECT. The second version
extends nearq until it is connected to randq or a col-
lision is detected. In this case newq will be the far-
thest collision-free configuration towards randq . In
order to reach the goal configuration, the random
sampling can be biased to include goalq sometimes
in the random sequence, or a bidirectional search can
be performed by growing two trees from both the in-
itial and goal configurations [14].

The RRT method can be applied to nonho-
lonomic systems as well. Instead of a simple inter-
polation towards randq (which assumes free mobil-
ity in any directions) a system-specific action should
be applied in the CONNECT step. In case of its EX-
TEND version, an input has to be chosen and applied
for a given time quantum t∆ to obtain a q∆ which
brings nearq closer to randq (actually this was the
original version proposed by the authors of RRT in
[3]). On the other hand, the CONNECT version can
be applied for systems where an explicit steering
method is available to connect two configurations.

1 Note that the efficiency of nearest neighbor search can
be increased in this case by using the KD-tree data struc-
ture [11].

THE RTR-PLANNER

In case of the differential drive, both versions
can be implemented. In the EXTEND version, a fi-
nite set of discrete),(rl vvu = input realizations has
to be simulated for t∆ time, choosing the one which
brings nearq closest to randq . This version causes
curved edges between tree vertices, which makes
NEAREST_NEIGHBOR difficult if inner configu-
rations of edges should be taken into account in the
vertex selection step. This issue can be resolved by
using a small t∆ to obtain very short edges and con-
sidering only tree vertices for vertex selection. Of
course, this will highly increase the number of verti-
ces and distance measurement steps between randq
and the tree.1

If one would like to use the CONNECT version,
a steering method is needed. For differential drive,
the simplest steering method is the following se-
quence of straight motion and turning-in-place prim-
itives: (1) Turn to head to the next position, (2) move
straight until it is reached and (3) turn to the desired
orientation. This simple method has the advantage
that it delivers an exact solution between two config-
urations (no sampling of the input set is needed) and
additionally, the edges of the tree will be straight
thus making the nearest neighbor search easy, even
if inner configurations of edges are involved in the
search. This latter property helps to keep the number
of tree vertices as low as possible. Although these
are attractive properties, this version of the algorithm
has problems if narrow passages are present in the
environment. An example is depicted in Fig. 2,
where the trees are shown projected to the two-di-
mensional workspace after 1000 iterations.

 D .Kiss, G.Tevesz ● Th e RTR Path Plann er … 19

Fig. 2. A naive application of RRT with a rotate–trans-
late–rotate steering method usually fails to solve prob-

lems containing narrow passages

The tree starting from initq preferred forward
motion during the translation primitive, while the
other preferred backward motion. It can be seen that
the trees have not so many branches as would be ex-
pected after this number of iterations. This means
that the CONNECT operation failed frequently to
extend the tree. The problem is caused by the naive
application of the rotate–translate–rotate steering
method. As defined above, CONNECT applies the
steering method until it reaches randq or a collision
is detected. In the vicinity of a wall or a narrowing,
the collision will occur most likely during the first
rotation primitive, hence no translation, i.e. no effec-
tive extension of the tree will be achieved.

The advantageous properties of the RRT and the
rotate–translate–rotate steering method, together
with the above mentioned problem served as the
main motivation for developing the proposed RTR-
planner algorithm.

RT-TREES AND PRIMITIVES

The RTR-planner is similar to a bidirectional
RRT algorithm. However, it has differences in the
sampling, the vertex selection and the extension
steps as well. It uses translation (T) and rotation (R)
primitives for building the trees. In the extension
steps, only RT (rotate–translate) sequences are used
instead of the exact RTR steering method. For this
reason, we denote the constructed trees as RT-trees.
The vertices of the trees are configurations as usual
and the edges are continua of configurations. Ac-
cording to T and R motion primitives, these are
called Translational Configuration Intervals (TCIs)
and Rotational Configuration Intervals (RCIs). The
process of an RT-tree construction can be seen in Al-
gorithm 2 and is detailed in the sequel.

Algorithm 2.
Construction of an RT-tree

1. function RT_CONSTRUCT ()initq
2. ()initqT init.
3. for all 1=k to K do
4. ()SAMPLE_POS←Gp
5. ←nearq NEAREST_NEIGHBOR
()TpG ,
6. ←σmin MIN_TURN_DIR ()Gnear pq ,

7. ()minnearqTcollision σ← ,,EXTEND
8. if collision then
9. ()minnearqT σ−,,EXTEND
10. end if

11. end for
12. return T
13. end function

14. function ()qT init.
15. ()qT add_vertex.
16. ()forward'',TCI_EXTEND qTCI ←
17. ()endqTCIT .add_vertex.
18. ()TCIqT ,add_edge.
19. ()backward'',TCI_EXTEND qTCI ←
20. ()endqTCIT .add_vertex.
21. ()TCIqT ,add_edge.
22. end function

23. function ()turn_dirqT ,,EXTEND
24.

[] ()turn_dirqcollisionRCI ,RCI_EXTEND, ←
25. ()endqRCIT .add_vertex.
26. ()RCIqT ,add_edge.
27. ()forward'',.TCI_EXTEND endqRCITCI ←
28. ()endqTCIT .add_vertex.
29. ()TCIqRCIT end ,.add_edge.
30. ()backward'',.TCI_EXTEND endqRCITCI ←
31. ()endqTCIT .add_vertex.
32. ()TCIqRCIT end ,.add_edge.
33. return collision
34. end function

SAMPLING, VERTEX SELECTION AND
 EXTENSION

The first difference to RRT can be found in the
sampling step. SAMPLE_POS returns a position Gp
– denoted as the guiding position in the sequel – in-
stead of a configuration. It can be treated as a one-
dimensional continuous set of configurations, from
which any element can serve as local goal in the EX-
TEND step. The guiding position can be chosen ran-
domly from the workspace, or the random sampling
can be biased as seen in case of the RRT method. We
use a bias towards positions which are expected to
guide the growth of trees through narrowings. These
positions are obtained by a triangular cell decompo-
sition of the free workspace, where the free triangle
edge midpoints are saved as possible guiding posi-
tions (see Fig. 3). The midpoints are mostly located
far from obstacles but are present around narrow
passages as well. A similar result could be obtained
by determinig the Voronoi regions of the free space,
but that would require more computational effort.

ИНФ ОРМ АЦИО Н Н ЫЕ Т ЕХ Н ОЛОГ ИИ 20

Fig. 3. The random sampling is biased towards fixed
guiding positions obtained by a triangular cell decompo-

sition

NEAREST_NEIGHBOR returns the configura-
tion in the existing tree which has the smallest posi-
tion distance to Gp . This step uses a simple Euclid-
ean metric, hence no special configuration space
metrics are needed.2

The main difference to the RRT method can be
found in the tree extension step. On the one hand,
translation is always performed in both forward and
backward directions. Additionally, the translation is
not stopped when Gp is reached, but continued until
the first collision in both directions (this is the func-
tionality of TCI_EXTEND, called by the init.T and
the EXTEND functions as well). On the other hand,
an important difference is the fact that an RT se-
quence will always be planned, even if a collision
occurred in the rotation phase. The RTR-planner bal-
ances between reaching the guiding positions and
extending the tree. If Gp cannot be reached because
of a collision, then two things can be done:
If the collision occured during the T primitive, then

the iteration is finished (because the tree has been
extended).

If the collision occured during the R primitive, then
TCI_EXTEND is performed in both forward and
backward directions at the colliding orientation
(first extension), and the rotation is tried again in
the other turning direction as well. After the sec-
ond rotation, independently from its success or
collision, TCI_EXTEND is called again (second
extension). An example of this procedure can be
seen in Fig. 4.

2 Several approaches are available for obtaining metrics in configuration spaces,
but these always have the problem of mixing different quantities (e.g. length and
angle). For more information see [11].

Fig. 4. Illustration of the tree extension procedure if the
direction to pG is blocked

OBTAINING THE RESULT

As already mentioned, the RTR-planner builds
two RT-trees, one from the initial and one from the
goal configuration. In order to obtain a final path, the
two trees have to be connected. This is attempted in
every iteration as follows. At the end of an iteration,
the newly added TCIs are checked against every TCI
in the other tree, starting from its root. If an intersec-
tion is found and if a collision-free RCI can be put
between the intersecting TCIs to connect them, then
the two trees can be merged and the path determined
easily by tracing the trees back to their roots.

Fig. 5. Result of the RTR-planner (after 14 iterations)

Fig. 5 shows the result of the RTR-planner for
the same scenario as seen in fig. 2. In this case the
path was obtained after 14 iterations (remember that
the naive application of the RRT method failed to
return a path in 1000 iterations). The average itera-
tion count of the RTR-planner was 18.82 for this sce-
nario (averaged over 50 runs).

 D .Kiss, G.Tevesz ● Th e RTR Path Plann er … 19

SIMULATION RESULTS

Two example scenarios are depicted in Fig. 6.
Scenario A contains relative large free areas and one
narrow passage between two obstacles. Scenario B
illustrates a more difficult situation: a narrow M-
shaped corridor has to be passed, where the width of
the corridor is comparable with the dimensions of
the robot. The figure shows the paths resulting from
the RTR planning process for each scenario, together
with the RT-trees projected to the workspace. Both
the naive RRT-based planner (using bidirectional
search and the rotate–translate–rotate steering
method) and the RTR-planner algorithm was tested
on these scenarios. The algorithms have been run 50
times, the maximum allowed number of iterations
was 1000. The success ratio (percentage of success-
ful runs) and the average iteration count of the suc-
cessful runs are collected in Table 1. It can be seen
that the RTR-planner is more successful and signifi-
cantly faster. The first scenario was mostly solvable
for the naive RRT as well but with an approx. 4 times
higher iteration count. This is not surprising because
the RRT extends the tree with maximum one rotate-
translate sequence in one iteration, while the RTR-
planner can insert up to four of these (as seen in Fig.
4).

Fig 6. Example scenarios

Table 1. Comparing the efficiency of the naive RRT and
the RTR-planner methods

Scenario A Naive RRT RTR-plan-
ner

Success ratio 96% 100%

Avg. iteration count 53.38 12.9

Scenario B Naive RRT RTR-plan-
ner

Success ratio 16% 100%

Avg. iteration count 683.5 67.2

The advantages of the RTR-planner are stronger
highlighted in the second example. Here the naive
RRT method mostly failed to return a path. In con-
trast with that, the RTR planner was 100% success-
ful with about 10 times lower iteration count.

CONCLUSIONS AND FUTURE WORK

A new path planning method was proposed for
differential drive mobile robots, based on the idea of
Rapidly exploring Random Trees. The main results
are:

Different sampling, vertex selection and tree ex-
tension steps

Flexible free space exploration using only rota-
tion and translation primitives

Good results in scenarios containing narrow pas-
sages

Despite the convincing properties of the RTR
planning method, it has weaknesses as well. It
mostly fails in more complicated environments, like
a multiple bug trap or a maze. These are challenging
for any sampling-based method in general. Further
work has to be done to improve the performance in
such situations, e.g. by exploiting some system-spe-
cific properties of polygonal differential drive ro-
bots.

ACKNOWLEDGMENTS

This work was partially supported by the Euro-
pean Union and the European Social Fund through
project FuturICT.hu (grant no.: TAMOP-4.2.2.C-
11/1/KONV-2012-0013) organized by VIKING Zrt.
Balatonfüred. This work was partially supported by
the Hungarian Government, managed by the Na-
tional Development Agency, and financed by the
Research and Technology Innovation Fond through
project eAutoTech (grant no.: KMR_12-1-2012-
0188).

ИНФ ОРМ АЦИО Н Н ЫЕ Т ЕХ Н ОЛОГ ИИ 22

REFERENCES

1. Latombe J.-C. “Robot Motion Planning”, Kluwer
Academic Publishers, Boston, MA, 1991.

2. Laumond J.-P., Sekhavat S., Lamiraux F. “Guide-
lines in nonholonomic motion planning for mobile ro-
bots”. In: Laumond J.-P. (ed) Robot Motion Planning
and Control. Springer, 1998, (Lecture Notes in Con-
trol and Information Sciences No. 229).

3. LaValle S. M. “Rapidly-exploring random trees: A
new tool for path planning”, tech. rep., Computer Sci-
ence Dept., Iowa State University, 1998.

4. Dubins L. E. “On curves of minimal length with a
constraint on average curvature, and with prescribed
initial and terminal positions and tangents”. Amer. J.
of Math. 1957; 79:497-516.

5. Reeds J. A., Shepp L. A. “Optimal paths for a car that
goes both forwards and backwards”. Pacif. J. of Math.
1990; 145:367-393.

6. Giordano P. R., Vendittelli M., Laumond J.-P.,
Soueres P. “Nonholonomic distance to polygonal ob-
stacles for a car-like robot of polygonal shape”. IEEE
Trans. Robot. 2006; 22:1040-1047.

7. Chitsaz H., O’Kane J. M., Balkcom D. J., Mason
M. T. “Minimum wheel-rotation paths for differen-
tial-drive mobile robots”. In: Proc. of the IEEE Inter-
national Conference on Robotics and Automation,
2006, pp. 1616-1623.

8. Chitsaz H., LaValle S. M. “Minimum wheel-rotation
paths for differential drive mobile robots among piece-
wise smooth obstacles”. In: Proc. of the IEEE Inter-
national Conference on Robotics and Automation,
2007, pp. 2718-2723.

9. Laumond J.-P., Jacobs P. E., Taix M., Murray R.
M. “A motion planner for nonholonomic mobile ro-
bots”. IEEE Trans. Robot. Autom. 1994; 10:577-593.

10. Sekhavat S., Chyba M. “Nonholonomic deformation
of a potential field for motion planning”. In: Proc. of
the IEEE International Conference on Robotics and
Automation, 1999, pp. 817-822.

11. LaValle S. M. “Sampling-based motion planning”. In:
Planning Algorithms. Cambridge University Press,
Cambridge, U. K., 2006, Available online at
http://planning.cs.uiuc.edu/

12. Kavraki L. E., Svetska P., Latombe J.-C., Overmars
M. H. “Probabilistic roadmaps for path planning in
high-dimensional configuration spaces”. IEEE Trans.
Robot. Autom. 1996; 12:566-580.

13. Yershowa A., Jaillet L., Simeon T., LaValle S. M.
“Dynamic-domain RRTs: Efficient exploration by
controlling the sampling domain”. In: Proc. of the
IEEE International Conference on Robotics and Auto-
mation, 2005, pp. 3856-3861.

14. LaValle S. M., Kuffner J. J. “Randomized ki-
nodynamic planning”. Int. J. Robot. Res. 2001;
20:378-400.

METADATA

Title: The RTR Path Planner for Differential Drive Robots
Authors: Domokos Kiss 1, Gábor Tevesz2
Affiliation:

 1, 2 Budapest University of Technology and Economics
Budapest, Hungary
Email: domokos.kiss@aut.bme.hu, tevesz@aut.bme.hu
Language: English

Source: SIIT, vol. 2, no. 2 (4), pp. 16-22, 2020. ISSN 2686-7044
(Online), ISSN 2658-5014 (Print).

Abstract: Path planning among obstacles is a challenging task
for nonholonomic mobile robots. One class of the most
widespread approaches for solving this are sampling-based
roadmap methods. These take samples from the configura-
tion space and use a local planner to connect them and to
build a roadmap. The resulting path is obtained by a graph
search algorithm in this roadmap. This paper presents the
RTR-Planner, a sampling-based global planning algorithm
for differential drive mobile robots, based on the idea of
Rapidly exploring Random Trees (RRT). The RTR-planner
builds two search trees consisting of rotation (R) and trans-
lation (T) primitives, starting from the initial and the goal
configuration. Samples are taken randomly or biased to-
wards passages in the free workspace. If the two trees
reach each other, the resulting path can be obtained easily.
Simulation results are presented which show the effective-
ness of the method even in the presence of narrow corri-
dors and passages.

Keywords: robots; locomotion systems; algorithm;
construction process, method
About authors:
Domokos Kiss, Assistant lecturer. Department of Automation
and Applied Informatics.
Budapest University of Technology and Economics
Budapest,Hungary
Gábor Tevesz, PhD. Department of Automation and Applied In-
formatics.
Budapest University of Technology and Economics
Budapest, Hungary

mailto:domokos.kiss@aut.bme.hu

	INTRODUCTION
	NONHOLONOMIC PLANNING AMONG
	OBSTACLES
	SAMPLING-BASED ROADMAP METHODS
	RAPIDLY EXPLORING RANDOM TREES
	THE RTR-PLANNER
	RT-TREES AND PRIMITIVES
	SAMPLING, VERTEX SELECTION AND
	EXTENSION
	OBTAINING THE RESULT
	SIMULATION RESULTS
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

