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Abstract. Path planning among obstacles is a challenging task for nonholonomic mobile robots. One class of 
the most widespread approaches for solving this are sampling-based roadmap methods. These take samples 
from the configuration space and use a local planner to connect them and to build a roadmap. The resulting 
path is obtained by a graph search algorithm in this roadmap. This paper presents the RTR-Planner, a sampling-
based global planning algorithm for differential drive mobile robots, based on the idea of Rapidly exploring 
Random Trees (RRT). The RTR-planner builds two search trees consisting of rotation (R) and translation (T) 
primitives, starting from the initial and the goal configuration. Samples are taken randomly or biased towards 
passages in the free workspace. If the two trees reach each other, the resulting path can be obtained easily. 
Simulation results are presented which show the effectiveness of the method even in the presence of narrow 
corridors and passages. 
Key words: robots; locomotion systems; algorithm; construction process, method. 

INTRODUCTION 

Motion planning for robots is a widely studied 
field in the last decades [1]. The application of au-
tonomous mobile robots is increasingly widespread 
thus planning and control of their motion in environ-
ments cluttered with obstacles is a very important 
area of research. From the perspective of motion 
planning, any robot can be described by its configu-
ration. For example, the configuration of a rigid mo-
bile robot moving in a planar workspace 2RW ⊂  can 
be given by ),,( θ= yxq , a vector of its position and 
orientation in the configuration space C . The set of 
not allowed configurations (e.g. because of collision 
with obstacles) is called the configuration space ob-
stacle obsC , its complement is the free space 

obsfree CCC \= . 
The most popular locomotion systems for mo-

bile robots moving on a planar surface are based on 
rolling wheels, according to their mechanical sim-
plicity and popularity among everyday vehicles. 
However, the rolling without slipping constraint of 
wheels induce nonholonomic kinematic constraints 
which cause remarkable difficulties in the control of 
these systems [2] (this can be acknowledged by an-
yone who ever tried to parallel park a car). Although 

the motion control of a nonholonomic vehicle (like a 
car or a differential drive robot) is a control theoretic 
challenge, it is worth incorporating the knowledge 
about the specific system in the path planning task as 
well. 

The RTR (rotate–translate–rotate) planning al-
gorithm described in this paper was motivated by the 
differential drive, which is one of the most popular 
wheel arrangements among mobile robots. Its kine-
matic motion equation looks like as follows: 
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where lv  and rv  are the velocities of the left and 
right wheels, respectively, treated as input variables 
of the system, and bw  is the wheelbase of the robot. 
This arrangement induces a nonholonomic kine-
matic constraint, namely the robot can move only in 
the direction of its actual heading, however, it allows 
the robot to turn in place. This ensures a great mo-
bility e.g. compared to a steered, car-like robot. 
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Based on this property, a differential drive robot can 
move in any direction provided that it has enough 
space to turn to that direction. It follows that if the 
robot can be virtually replaced by a disk of its turn-
ing radius, then any geometric path planned for a ho-
lonomic (non-constrained), circle-shaped robot of 
the same size can be followed using differential 
drive as well. Unfortunately this simplification is 
useless if the environment contains narrow corridors 
and passages (see Fig. 1). Our currently proposed 
RTR planning method does not need the above men-
tioned simplification, because it takes the exact 
shape of the robot into account. The RTR-planner 
can be treated as an adaptation and modification of 
the Rapidly exploring Random Trees (RRT) ap-
proach [3] to the case of polygonal-shaped differen-
tial drive robots moving among polygonal obstacles. 

Fig. 1. A differential drive robot can be replaced by a 
holonomic disk of its turning radius for path planning. 

Although, this leads to problems when narrow corridors 
have to be passed 

The remainder of the paper is organized as fol-
lows. An overview of planning approaches for non-
holonomic robots is given in Section 2, including the 
RRT approach which served as inspiration for the in-
vention of our method. In Section 3 we explain our 
RTR planning algorithm in detail. To show the ef-
fectiveness of the planner, simulation results are pre-
sented in Section 4. Conclusions and directions of 
future work are summarized in Section 5. 

NONHOLONOMIC PLANNING AMONG 
OBSTACLES 

Generating feasible paths for nonholonomic ro-
bots is not trivial even in the absence of obstacles. 
Algorithms that can solve this are called local plan-
ners or steering methods. In case of specific wheeled 
robots exact methods exist for computing optimal 
(e.g. shortest length) local paths. These include car-
like robots moving forward (Dubins-car [4]) or both 
forward and backward (Reeds–Shepp-car [5, 6]), 
and robots equipped with differential drive [7].  

However, a useful planning algorithm has to 
generate paths in the presence of obstacles while tak-

ing into account the kinematic constraints of the ve-
hicle as well. To the best of our knowledge, there is 
no general optimal solution available for this prob-
lem. For differential drive, an optimal approach is 
presented in [8], but only for disk-shaped robots. 
Thus generally, if obstacles are present, one should 
be satisfied with a feasible solution which is not nec-
essarily optimal. The majority of planning algo-
rithms delivering a feasible solution can be grouped 
into two main categories. The first category consists 
of techniques that approximate a not necessarily fea-
sible but collision-free initial geometric path by a se-
quence of feasible local paths obtained by a steering 
method [9, 10]. The second category involves sam-
pling-based roadmap methods, which build a graph 
in order to capture the topology of freeC  and use lo-
cal steering methods to connect the graph nodes. 

SAMPLING-BASED ROADMAP METHODS 

A good survey of sampling-based planning 
methods can be found in [11]. The majority of these 
are based on random sampling of the configuration 
space. Their popularity arise from the fact that they 
do not require an explicit representation of obsC , 
only a black-box collision detector module which 
can tell whether a given configuration is in obsC  or 
not. These methods proved to be successful in many 
planning problems, including high-dimensional con-
figuration spaces. For example, the Probabilistic 
Roadmap Method (PRM) [12] samples the configu-
ration space in advance and tries to connect the sam-
ples using collision-free local paths in order to obtain 
a roadmap (preprocessing phase). In the next step the 
initial and goal configurations are connected to the 
roadmap and a solution path is obtained by a graph 
search algorithm (query phase). As the prepro-
cessing phase usually requires great computational 
effort, this approach is well-suited to multiple query 
problems in a static environment.  

For single-query problems, the Rapidly explor-
ing Random Trees (RRT) approach is better suited 
[3]. The main idea of it is to incrementally build a 
search tree starting from the initial configuration in 
a way that the tree covers the free space rapidly and 
with gradually increasing resolution.  

RAPIDLY EXPLORING RANDOM TREES 

The basic RRT construction process can be seen 
in Algorithm 1. The building of the tree T  starts 
from the initial configuration initq . RAN-
DOM_CONFIG returns a random configuration 

randq  from C  (sampling step).  



ИНФ ОРМ АЦИО Н Н ЫЕ Т ЕХ Н ОЛОГ ИИ   18 

Algorithm 1.  
The basic RRT construction algorithm [13] 

1. ( )initqT init.
2. for all 1=k  to K  do
3. ←randq RANDOM_CONFIG()
4. ←nearq NEAREST_NEIGHBOR ( )Tqrand ,
5. if ( )newnearrand qqqT ,,,CONNECT  then
6. ( )newqT vertexadd_.
7. ( )newnear qqT ,add_edge.
8. end if
9. end for
10. return T

NEAREST_NEIGHBOR determines the nearest 
configuration nearq  in the tree, according to a metric 
defined on the configuration space (vertex selection 
step). It depends on the implementation if this func-
tion can return only graph vertices or inner configu-
rations of edges as well. CONNECT tries to connect 

nearq  to randq  by interpolating between them (tree 
extension step). More versions of this function are 
proposed by the authors of RRT. The first version 
extends nearq  only by a fixed q∆  amount towards 

randq  to obtain newq  (let us call this version EX-
TEND instead of CONNECT. The second version 
extends nearq  until it is connected to randq  or a col-
lision is detected. In this case newq  will be the far-
thest collision-free configuration towards randq . In 
order to reach the goal configuration, the random 
sampling can be biased to include goalq  sometimes 
in the random sequence, or a bidirectional search can 
be performed by growing two trees from both the in-
itial and goal configurations [14]. 

The RRT method can be applied to nonho-
lonomic systems as well. Instead of a simple inter-
polation towards randq  (which assumes free mobil-
ity in any directions) a system-specific action should 
be applied in the CONNECT step. In case of its EX-
TEND version, an input has to be chosen and applied 
for a given time quantum t∆  to obtain a q∆  which 
brings nearq  closer to randq  (actually this was the 
original version proposed by the authors of RRT in 
[3]). On the other hand, the CONNECT version can 
be applied for systems where an explicit steering 
method is available to connect two configurations. 

1 Note that the efficiency of nearest neighbor search can 
be increased in this case by using the KD-tree data struc-
ture [11]. 

THE RTR-PLANNER 

In case of the differential drive, both versions 
can be implemented. In the EXTEND version, a fi-
nite set of discrete ),( rl vvu =  input realizations has 
to be simulated for t∆  time, choosing the one which 
brings nearq  closest to randq . This version causes 
curved edges between tree vertices, which makes 
NEAREST_NEIGHBOR difficult if inner configu-
rations of edges should be taken into account in the 
vertex selection step. This issue can be resolved by 
using a small t∆  to obtain very short edges and con-
sidering only tree vertices for vertex selection. Of 
course, this will highly increase the number of verti-
ces and distance measurement steps between randq  
and the tree.1  

If one would like to use the CONNECT version, 
a steering method is needed. For differential drive, 
the simplest steering method is the following se-
quence of straight motion and turning-in-place prim-
itives: (1) Turn to head to the next position, (2) move 
straight until it is reached and (3) turn to the desired 
orientation. This simple method has the advantage 
that it delivers an exact solution between two config-
urations (no sampling of the input set is needed) and 
additionally, the edges of the tree will be straight 
thus making the nearest neighbor search easy, even 
if inner configurations of edges are involved in the 
search. This latter property helps to keep the number 
of tree vertices as low as possible. Although these 
are attractive properties, this version of the algorithm 
has problems if narrow passages are present in the 
environment. An example is depicted in Fig. 2, 
where the trees are shown projected to the two-di-
mensional workspace after 1000 iterations. 
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Fig. 2. A naive application of RRT with a rotate–trans-
late–rotate steering method usually fails to solve prob-

lems containing narrow passages 

The tree starting from initq  preferred forward 
motion during the translation primitive, while the 
other preferred backward motion. It can be seen that 
the trees have not so many branches as would be ex-
pected after this number of iterations. This means 
that the CONNECT operation failed frequently to 
extend the tree. The problem is caused by the naive 
application of the rotate–translate–rotate steering 
method. As defined above, CONNECT applies the 
steering method until it reaches randq  or a collision 
is detected. In the vicinity of a wall or a narrowing, 
the collision will occur most likely during the first 
rotation primitive, hence no translation, i.e. no effec-
tive extension of the tree will be achieved. 

The advantageous properties of the RRT and the 
rotate–translate–rotate steering method, together 
with the above mentioned problem served as the 
main motivation for developing the proposed RTR-
planner algorithm. 

RT-TREES AND PRIMITIVES 

The RTR-planner is similar to a bidirectional 
RRT algorithm. However, it has differences in the 
sampling, the vertex selection and the extension 
steps as well. It uses translation (T) and rotation (R) 
primitives for building the trees. In the extension 
steps, only RT (rotate–translate) sequences are used 
instead of the exact RTR steering method. For this 
reason, we denote the constructed trees as RT-trees. 
The vertices of the trees are configurations as usual 
and the edges are continua of configurations. Ac-
cording to T and R motion primitives, these are 
called Translational Configuration Intervals (TCIs) 
and Rotational Configuration Intervals (RCIs). The 
process of an RT-tree construction can be seen in Al-
gorithm 2 and is detailed in the sequel.  

Algorithm 2.  
Construction of an RT-tree 

1. function RT_CONSTRUCT ( )initq
2. ( )initqT init.
3. for all 1=k  to K  do
4. ( )SAMPLE_POS←Gp
5. ←nearq NEAREST_NEIGHBOR
( )TpG ,
6. ←σmin MIN_TURN_DIR ( )Gnear pq ,

7. ( )minnearqTcollision σ← ,,EXTEND
8. if collision then
9. ( )minnearqT σ−,,EXTEND
10. end if

11. end for
12. return T
13. end function

14. function ( )qT init.
15. ( )qT add_vertex.
16. ( )forward'',TCI_EXTEND qTCI ←
17. ( )endqTCIT .add_vertex.
18. ( )TCIqT ,add_edge.
19. ( )backward'',TCI_EXTEND qTCI ←
20. ( )endqTCIT .add_vertex.
21. ( )TCIqT ,add_edge.
22. end function

23. function ( )turn_dirqT ,,EXTEND
24. 

[ ] ( )turn_dirqcollisionRCI ,RCI_EXTEND, ←
25. ( )endqRCIT .add_vertex.
26. ( )RCIqT ,add_edge.
27. ( )forward'',.TCI_EXTEND endqRCITCI ←
28. ( )endqTCIT .add_vertex.
29. ( )TCIqRCIT end ,.add_edge.
30. ( )backward'',.TCI_EXTEND endqRCITCI ←
31. ( )endqTCIT .add_vertex.
32. ( )TCIqRCIT end ,.add_edge.
33. return collision
34. end function

SAMPLING, VERTEX SELECTION AND 
 EXTENSION 

The first difference to RRT can be found in the 
sampling step. SAMPLE_POS returns a position Gp  
– denoted as the guiding position in the sequel – in-
stead of a configuration. It can be treated as a one-
dimensional continuous set of configurations, from 
which any element can serve as local goal in the EX-
TEND step. The guiding position can be chosen ran-
domly from the workspace, or the random sampling 
can be biased as seen in case of the RRT method. We 
use a bias towards positions which are expected to 
guide the growth of trees through narrowings. These 
positions are obtained by a triangular cell decompo-
sition of the free workspace, where the free triangle 
edge midpoints are saved as possible guiding posi-
tions (see Fig. 3). The midpoints are mostly located 
far from obstacles but are present around narrow 
passages as well. A similar result could be obtained 
by determinig the Voronoi regions of the free space, 
but that would require more computational effort.  
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Fig. 3. The random sampling is biased towards fixed 
guiding positions obtained by a triangular cell decompo-

sition 

NEAREST_NEIGHBOR returns the configura-
tion in the existing tree which has the smallest posi-
tion distance to Gp . This step uses a simple Euclid-
ean metric, hence no special configuration space 
metrics are needed.2 

The main difference to the RRT method can be 
found in the tree extension step. On the one hand, 
translation is always performed in both forward and 
backward directions. Additionally, the translation is 
not stopped when Gp  is reached, but continued until 
the first collision in both directions (this is the func-
tionality of TCI_EXTEND, called by the init.T  and 
the EXTEND functions as well). On the other hand, 
an important difference is the fact that an RT se-
quence will always be planned, even if a collision 
occurred in the rotation phase. The RTR-planner bal-
ances between reaching the guiding positions and 
extending the tree. If Gp  cannot be reached because 
of a collision, then two things can be done: 
If the collision occured during the T primitive, then 

the iteration is finished (because the tree has been 
extended). 

If the collision occured during the R primitive, then 
TCI_EXTEND is performed in both forward and 
backward directions at the colliding orientation 
(first extension), and the rotation is tried again in 
the other turning direction as well. After the sec-
ond rotation, independently from its success or 
collision, TCI_EXTEND is called again (second 
extension). An example of this procedure can be 
seen in Fig. 4. 

2 Several approaches are available for obtaining metrics in configuration spaces, 
but these always have the problem of mixing different quantities (e.g. length and 
angle). For more information see [11]. 

Fig. 4. Illustration of the tree extension procedure if the 
direction to pG is blocked 

OBTAINING THE RESULT 

As already mentioned, the RTR-planner builds 
two RT-trees, one from the initial and one from the 
goal configuration. In order to obtain a final path, the 
two trees have to be connected. This is attempted in 
every iteration as follows. At the end of an iteration, 
the newly added TCIs are checked against every TCI 
in the other tree, starting from its root. If an intersec-
tion is found and if a collision-free RCI can be put 
between the intersecting TCIs to connect them, then 
the two trees can be merged and the path determined 
easily by tracing the trees back to their roots.  

Fig. 5. Result of the RTR-planner (after 14 iterations) 

Fig. 5 shows the result of the RTR-planner for 
the same scenario as seen in fig. 2. In this case the 
path was obtained after 14 iterations (remember that 
the naive application of the RRT method failed to 
return a path in 1000 iterations). The average itera-
tion count of the RTR-planner was 18.82 for this sce-
nario (averaged over 50 runs). 
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SIMULATION RESULTS 

Two example scenarios are depicted in Fig. 6. 
Scenario A contains relative large free areas and one 
narrow passage between two obstacles. Scenario B 
illustrates a more difficult situation: a narrow M-
shaped corridor has to be passed, where the width of 
the corridor is comparable with the dimensions of 
the robot. The figure shows the paths resulting from 
the RTR planning process for each scenario, together 
with the RT-trees projected to the workspace. Both 
the naive RRT-based planner (using bidirectional 
search and the rotate–translate–rotate steering 
method) and the RTR-planner algorithm was tested 
on these scenarios. The algorithms have been run 50 
times, the maximum allowed number of iterations 
was 1000. The success ratio (percentage of success-
ful runs) and the average iteration count of the suc-
cessful runs are collected in Table 1. It can be seen 
that the RTR-planner is more successful and signifi-
cantly faster. The first scenario was mostly solvable 
for the naive RRT as well but with an approx. 4 times 
higher iteration count. This is not surprising because 
the RRT extends the tree with maximum one rotate-
translate sequence in one iteration, while the RTR-
planner can insert up to four of these (as seen in Fig. 
4). 

Fig 6. Example scenarios 

Table 1. Comparing the efficiency of the naive RRT and 
the RTR-planner methods 

Scenario A Naive RRT RTR-plan-
ner 

Success ratio 96% 100% 

Avg. iteration count 53.38 12.9 

Scenario B Naive RRT RTR-plan-
ner 

Success ratio 16% 100% 

Avg. iteration count 683.5 67.2 

The advantages of the RTR-planner are stronger 
highlighted in the second example. Here the naive 
RRT method mostly failed to return a path. In con-
trast with that, the RTR planner was 100% success-
ful with about 10 times lower iteration count.  

CONCLUSIONS AND FUTURE WORK 

A new path planning method was proposed for 
differential drive mobile robots, based on the idea of 
Rapidly exploring Random Trees. The main results 
are:  

Different sampling, vertex selection and tree ex-
tension steps 

Flexible free space exploration using only rota-
tion and translation primitives 

Good results in scenarios containing narrow pas-
sages 

Despite the convincing properties of the RTR 
planning method, it has weaknesses as well. It 
mostly fails in more complicated environments, like 
a multiple bug trap or a maze. These are challenging 
for any sampling-based method in general. Further 
work has to be done to improve the performance in 
such situations, e.g. by exploiting some system-spe-
cific properties of polygonal differential drive ro-
bots. 
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