The RTR Path Planner for Differential Drive Robots

D. Kiss, G. Tevesz

Аннотация


Path planning among obstacles is a challenging task for nonholonomic mobile robots. One class of the most widespread approaches for solving this are sampling-based roadmap methods. These take samples from the configuration space and use a local planner to connect them and to build a roadmap. The resulting path is obtained by a graph search algorithm in this roadmap. This paper presents the RTR-Planner, a sampling-based global planning algorithm for differential drive mobile robots, based on the idea of Rapidly exploring Random Trees (RRT). The RTR-planner builds two search trees consisting of rotation (R) and translation (T) primitives, starting from the initial and the goal configuration. Samples are taken randomly or biased towards passages in the free workspace. If the two trees reach each other, the resulting path can be obtained easily. Simulation results are presented which show the effectiveness of the method even in the presence of narrow corridors and passages.

Ключевые слова


robots; locomotion systems; algorithm; construction process, method

Полный текст:

PDF (English)

Литература


Latombe J.-C. “Robot Motion Planning”, Kluwer Academic Publishers, Boston, MA, 1991.

Laumond J.-P., Sekhavat S., Lamiraux F. “Guidelines in nonholonomic motion planning for mobile robots”. In: Laumond J.-P. (ed) Robot Motion Planning and Control. Springer, 1998, (Lecture Notes in Control and Information Sciences No. 229).

LaValle S. M. “Rapidly-exploring random trees: A new tool for path planning”, tech. rep., Computer Science Dept., Iowa State University, 1998.

Dubins L. E. “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”. Amer. J. of Math. 1957; 79:497-516.

Reeds J. A., Shepp L. A. “Optimal paths for a car that goes both forwards and backwards”. Pacif. J. of Math. 1990; 145:367-393.

Giordano P. R., Vendittelli M., Laumond J.-P., Soueres P. “Nonholonomic distance to polygonal obstacles for a car-like robot of polygonal shape”. IEEE Trans. Robot. 2006; 22:1040-1047.

Chitsaz H., O’Kane J. M., Balkcom D. J., Mason M. T. “Minimum wheel-rotation paths for differential-drive mobile robots”. In: Proc. of the IEEE International Conference on Robotics and Automation, 2006, pp. 1616-1623.

Chitsaz H., LaValle S. M. “Minimum wheel-rotation paths for differential drive mobile robots among piecewise smooth obstacles”. In: Proc. of the IEEE International Conference on Robotics and Automation, 2007, pp. 2718-2723.

Laumond J.-P., Jacobs P. E., Taix M., Murray R. M. “A motion planner for nonholonomic mobile robots”. IEEE Trans. Robot. Autom. 1994; 10:577-593.

Sekhavat S., Chyba M. “Nonholonomic deformation of a potential field for motion planning”. In: Proc. of the IEEE International Conference on Robotics and Automation, 1999, pp. 817-822.

LaValle S. M. “Sampling-based motion planning”. In: Planning Algorithms. Cambridge University Press, Cambridge, U. K., 2006, Available online at http://planning.cs.uiuc.edu/

Kavraki L. E., Svetska P., Latombe J.-C., Overmars M. H. “Probabilistic roadmaps for path planning in high-dimensional configuration spaces”. IEEE Trans. Robot. Autom. 1996; 12:566-580.

Yershowa A., Jaillet L., Simeon T., LaValle S. M. “Dynamic-domain RRTs: Efficient exploration by controlling the sampling domain”. In: Proc. of the IEEE International Conference on Robotics and Automation, 2005, pp. 3856-3861.

LaValle S. M., Kuffner J. J. “Randomized kinodynamic planning”. Int. J. Robot. Res. 2001; 20:378-400.


Ссылки

  • На текущий момент ссылки отсутствуют.


(c) 2021 Domokos Kiss, Gábor Tevesz