Вопросы безопасности сервисов в самоорганизующихся сетях интеллектуальной транспортной системы VANET

Л. В. Легашев, Д. И. Парфенов, И. П. Болодурина, Ю. А. Ушаков

Аннотация


Разработка алгоритмов обеспечения сетевой безопасности в автомобильных самоорганизующихся сетях VANET с целью реализации интеллектуальной транспортной навигации, безусловно, имеет приоритетное значение. В работе проводится обзор существующих сетевых угроз VANET и криптографических алгоритмов аутентификации. Рассматриваются утилиты для работы с захваченным трафиком и популярные среды моделирования транспортных сетей. Формализуются основные элементы VANET, типы связей, уровни доверия, а также приводится схема взаимодействия юнитов VANET с точки зрения обнаружения сетевых угроз.

Ключевые слова


Автомобильные самоорганизующиеся сети; Интернет вещей; сетевые атаки; сетевая безопасность; симуляторы сетей; виртуализация сетевых функций.

Полный текст:

PDF

Литература


Jaballah W. B., Conti M., Lal C. A survey on software-defined VANETs: benefits, challenges, and future directions // arXiv preprint arXiv:1904.04577. 2019. P. 1–17. [W. B. Jaballah, M. Conti, C. Lal, “A survey on software-defined VANETs: benefits, challenges, and future directions”, in arXiv preprint arXiv:1904.04577, 2019, pp .1-17.]

Yang A. et al. Deqos attack: Degrading quality of service in Vanets and its mitigation // IEEE Transactions on Vehicular Technology. 2019. – V. 68. – №. 5. – P. 4834–4845. [A. Yang “Deqos attack: Degrading quality of service in Vanets and its mitigation” in IEEE Transactions on Vehicular Technology. 2019, vol. 68, № 5, pp. 4834-4845.]

Srivastava A., Prakash A., Tripathi R. Quality-of-Service based Reliable Route Discovery using Ant Colony Optimization for VANET // 2019 IEEE Conference on Information and Communication Technology. – IEEE, 2019. – P. 1–6. [A. Srivastava, A. Prakash, R. Tripathi “Quality-of-Service based Reliable Route Discovery using Ant Colony Optimization for VANET” in IEEE Conference on Information and Communication Technology, 2019, pp. 1-6.]

Zheng Y., Luo J., Zhong T. Service recommendation middleware based on location privacy protection in VANET // IEEE Access. – 2020. – Vol. 8. – P. 12768–12783. [Y. Zheng, J. Luo, T. Zhong “Service recommendation middleware based on location privacy protection in VANET” in IEEE Access. 2020, vol. 8, pp. 12768-12783.]

Zhou J. et al. LPPA: Lightweight Privacy-Preserving Authentication From Efficient Multi-Key Secure Outsourced Computation for Location-Based Services in VANETs // IEEE Transactions on Information Forensics and Security. – 2019. – Vol. 15. P. 420–434. [J. Zhou “LPPA: Lightweight Privacy-Preserving Authentication From Efficient Multi-Key Secure Outsourced Computation for Location-Based Services in VANETs” in IEEE Transactions on Information Forensics and Security. 2019, vol. 15, pp. 420-434.]

Wang W. et al. Protecting Semantic Trajectory Privacy for VANET with Reinforcement Learning // ICC 2019-2019 IEEE International Conference on Communications (ICC). – IEEE, 2019. P. 1–5. [W. Wang “Protecting Semantic Trajectory Privacy for VANET with Reinforcement Learning” in ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE, 2019, pp. 1-5.]

Zhou Y. et al. Conditional privacy-preserving authentication and key agreement scheme for roaming services in VANETs // Journal of Information Security and Applications. – 2019. – Vol. 47. – P. 295–301. [Y. Zhou “Conditional privacy-preserving authentication and key agreement scheme for roaming services in VANETs” in Journal of Information Security and Applications. 2019, vol. 47, pp. 295-301.]

Cirne P. et al. The impact of ECDSA in a VANET routing service: Insights from real data traces // Ad Hoc Networks. – 2019. – Vol. 90. – P. 101747. [P. Cirne “The impact of ECDSA in a VANET routing service: Insights from real data traces” in Ad Hoc Networks. 2019, vol. 90, pp. 101747.]

Palaniswamy B. et al. Continuous authentication for VANET // Vehicular Communications. – 2020. – P. 100255. [B. Palaniswamy “Continuous authentication for VANET” in Vehicular Communications. 2020, pp. 100255.]

Wang C. et al. B-TSCA: Blockchain assisted Trustworthiness Scalable Computation for V2I Authentication in VANETs // IEEE Transactions on Emerging Topics in Computing. – 2020. [C. Wang “B-TSCA: Blockchain assisted Trustworthiness Scalable Computation for V2I Authentication in VANETs” in IEEE Transactions on Emerging Topics in Computing. 2020.]

Abdelatif S. et al. VANET: A novel service for predicting and disseminating vehicle traffic information // International Journal of Communication Systems. – 2020. – Vol. 33. – № 6. – P. e4288. [S. Abdelatif “VANET: A novel service for predicting and disseminating vehicle traffic information” in International Journal of Communication Systems. 2020, vol. 33, № 6, pp. e4288.]

Wang Y. et al. Enhanced Security Identity-Based Privacy-Preserving Authentication Scheme Supporting Revocation for VANETs // IEEE Systems Journal. – 2020. [Y. Wang “Enhanced Security Identity-Based Privacy-Preserving Authentication Scheme Supporting Revocation for VANETs” in IEEE Systems Journal. 2020.]

Cui J. et al. Full Session Key Agreement Scheme Based on Chaotic Map in Vehicular Ad hoc Networks // IEEE Transactions on Vehicular Technology. – 2020. [J. Cui “Full Session Key Agreement Scheme Based on Chaotic Map in Vehicular Ad hoc Networks” in IEEE Transactions on Vehicular Technology. 2020.]

Cui J. et al. Secure mutual authentication with privacy preservation in vehicular ad hoc networks // Vehicular Communications. – 2020. – Vol. 21. – P. 100200. [J. Cui “Secure mutual authentication with privacy preservation in vehicular ad hoc networks” in Vehicular Communications. 2020, Vol. 21, pp. 100200.]

CICFlowMeter [Электронный ресурс] URL: https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter (дата обращения 20.08.2020). [CICFlowMeter (2020, Aug. 20) [Online]. Available: https://github.com/CanadianInstituteForCybersecurity/CICFlowMeter]

flows_to_weka [Электронный ресурс] URL: https://github.com/fichtner/flows_to_weka (дата обращения 20.08.2020). [flows_to_weka (2020, Aug. 20) [Online].

Available: https://github.com/fichtner/flows_to_weka]

Pcap_Features_Extraction [Электронный ресурс] URL: https://github.com/lucadivit/Pcap_Features_Extraction (дата обращения 20.08.2020). [Pcap_Features_Extraction (2020, Aug. 20) [Online]. Available: https://github.com/lucadivit/Pcap_Features_Extraction]

Simulation of Urban Mobility [Электронный ресурс] URL: https://www.eclipse.org/sumo/ (дата обращения 20.08.2020). [Simulation of Urban Mobility (2020, Aug. 20) [Online]. Available: https://www.eclipse.org/sumo/]

OMNeT++ Discrete Event Simulator [Электронный ресурс] URL: https://omnetpp.org/ (дата обращения 20.08.2020). [OMNeT++ Discrete Event Simulator (2020, Aug. 20) [Online]. Available: https://omnetpp.org/]

Veins: The open source vehicular network simulation framework. [Электронный ресурс] URL: https://veins.car2x.org/ (дата обращения 20.08.2020). [Veins: The open source vehicular network simulation framework. (2020, Aug. 20) [Online]. Available: https://veins.car2x.org/]

Amoozadeh M. et al. VENTOS: Vehicular network open simulator with hardware-in-the-loop support // Procedia Computer Science. – 2019. – Vol. 151. – P. 61–68. [M. Amoozadeh “VENTOS: Vehicular network open simulator with hardware-in-the-loop support” in Procedia Computer Science. 2019, vol. 151, pp. 61-68.]

Wang L., Iida R., Wyglinski A. M. Vehicular network simulation environment via discrete event system modeling // IEEE Access. – 2019. – Vol. 7. – P. 87246–87264. [L. Wang, R. Iida, A. M. Wyglinski “Vehicular network simulation environment via discrete event system modeling” in IEEE Access. 2019, vol. 7, pp. 87246-87264.]


Ссылки

  • На текущий момент ссылки отсутствуют.


(c) 2021 Л. В. Легашев, Д. И. Парфенов, И. П. Болодурина, Ю. А. Ушаков