Метод реконфигурации кинематической структуры мехатронно-модульного робота в недетерминированных условиях

В. И. Петренко, Ф. Б. Тебуева, А. С. Павлов, М. М. Гурчинский

Аннотация


Модульные роботы, состоящие из множества однотипных модулей, относятся к одной из самых сложных областей робототехники. Каждый вновь добавленный модуль изменяет форму и возможности конечного устройства, например, добавляет функционал или позволяет роботу перемещаться в новых плоскостях. При этом процесс реконфигурации кинематической структуры представляет собой последовательность перемещений каждого модуля робота из начального положения исходной конфигурации в конечное положение требуемой конфигурации. В работе рассматривается метод реконфигурации кинематической структуры мехатронно-модульного робота с использованием обучения с подкреплением. Предлагаемый метод строится на основе обучающегося алгоритма, где информацией для обучения являются совершаемые действия и «награда», величина, характеризующая качество выполнения целевой задачи роботом. Целью обучения является построение алгоритма управления, максимизирующего суммарную награду за некоторый промежуток времени. Эффективность алгоритма обучения протестирована путем компьютерной симуляции робота, состоящего из 5, 10 и 15 модулей, при формировании целевой конфигурации.

Ключевые слова


Робототехника, мехатронно-модульный робот, обучение с подкреплением, планирование пути, мультиагентные системы, Q-обучение, автоматизация.

Полный текст:

PDF

Литература


Указ Президента Российской Федерации «О Стратегии научно-технологического развития Российской Федерации» от 01.12.2016 № 642 // Собрание законодательства Российской Федерации. – п.20.

M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and G. Chirikjian, «Modular self-reconfigurable robot systems [grand challenges of robotics]», Robotics Automation Magazine, IEEE, vol. 14, no. 1, pp. 43-52, March 2007.

Stoy K., Brandt D., & Christensen D. J. (2010). Self-reconfigurable robots: an introduction. Cambridge, MA: MIT Press.

Gorbenko A.A., Popov V.Y. Programming for modular reconfigurable robots. Programming and Computer Software, 2012; 38: 13-23. DOI: 10.1134/S0361768812010033.

Petrenko V.I., Tebueva F.B., Pavlov A.S., Antonov V.O., Kochanov M.S. Path Planning Method in the Formation of the Configuration of a Multifunctional Modular Robot Using a Swarm Control Strategy // 7th Scientific Conference on Information Technologies for Intelligent Decision Making Support (ITIDS 2019), Advances in Intelligent Systems Research. 2019. Vol-166. P. 165-170. DOI: https://doi.org/10.2991/itids-19.2019.30.

Mezenceva O.S., Petrenko V.I., Zhilina E., Pavlov A.S., Apurin A.A. Developing a concept of available multi-functional modular robot for education and research // CEUR Workshop Proceedings SLET 2019 - Proceedings of the International Scientific Conference Innovative Approaches to the Application of Digital Technologies in Education and Research. 2019.

Petrenko V., Tebueva F., Pavlov A., Gurchinsky M. The method of the kinematic structure reconfiguration of a multifunctional modular robot based on the greedy algorithm // 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia, 2019, pp. 42-47, doi: 10.1109/DeSE.2019.00018.

Kovács G., Yusupova N., Smetanina O., Rassadnikova E. Methods and algorithms to solve the vehicle routing problem with time windows and further conditions (2018) Pollack Periodica, 13 (1), pp. 65-76. DOI: 10.1556/606.2018.13.1.6.

Kutlubaev I.M., Zhydenko, I.G., Bogdanov, A.A. Basic concepts of power anthropomorphic grippers construction and calculation (2016) 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2016 - Proceedings, №7910963. DOI: 10.1109/ICIEAM.2016.7910963.

Petrenko V.I., Tebueva F.B., Gurchinsky M.M., Antonov V.O., Pavlov A.S. Predictive assessment of operator’s hand trajectory with the copying type of control for solution of the inverse dynamic problem. SPIIRAS Proc. 18, 123–147 (2019). DOI: 10.15622/sp.18.1.123-147.

Lynch K.M., Park FC. 2017. Modern Robotics. Cambridge, UK: Cambridge Univ. Press.

Liu J., Zhang X., & Hao G. (2016). Survey on research and development of reconfigurable modular robots. Advances in Mechanical Engineering. DOI: https://doi.org/10.1177/1687814016659597.

Ababsa Tarek & DJEDI, NourEddine & Duthen, Yves. (2017). Genetic Programming-based Self-Reconfiguration Planning for Metamorphic Robot. International Journal of Automation and Computing. DOI: 10.1007/s11633-016-1049-4.

Baca José & Dasgupta Raj & Hossain S.G.M. & Nelson Carl (2013). Modular robot locomotion based on a distributed fuzzy controller: The combination of modred's basic module motions. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems. 4302-4307. DOI: 10.1109/IROS.2013.6696973.

Dong Bo & Zhou Fan & Liu Keping & Li Yuanchun. (2017). Torque sensorless decentralized neuro-optimal control for modular and reconfigurable robots with uncertain environments. Neurocomputing. DOI: 282. 10.1016/j.neucom.2017.12.012.

Guettas Chourouk & Foudil Cherif & , Thomas Breton & Duthen Yves. (2014). Cooperative Co‐evolution of Configuration and Control for Modular Robots. International Conference on Multimedia Computing and Systems - Proceedings. DOI: 10.1109/ICMCS.2014.6911138.

Li Yan & Lu, Zengpeng & Zhou, Fan & Dong, Bo & Liu Keping & Li Yuanchun. (2019). Decentralized Trajectory Tracking Control for Modular and Reconfigurable Robots With Torque Sensor: Adaptive Terminal Sliding Control-Based Approach. Journal of Dynamic Systems, Measurement, and Control. 141. DOI: 10.1115/1.4042550.

Yeom Kiwon. (2015). Morphological approach for autonomous and adaptive system: The construction of three-dimensional artificial model based on self-reconfigurable modular agents. Neurocomputing. 148. 100–111. DOI: 10.1016/j.neucom.2012.12.082.

Brunete, A. Ranganath, A. Segovia, S. de Frutos, J. P., Hernando M., & Gambao E. (2017). Current trends in reconfigurable modular robots design. International Journal of Advanced Robotic Systems. DOI: https://doi.org/10.1177/1729881417710457.

Zhu Yanhe & Dongyang Bie & Wang Xiaolu & Zhang, Yu & Jin Hongzhe & Zhao Jie. (2016). A distributed and parallel control mechanism for self-reconfiguration of modular robots using L-systems and cellular automata. Journal of Parallel and Distributed Computing. 102. DOI: 10.1016/j.jpdc.2016.11.016.

Zhang Q., Fan C.X. Motion planning of robot on the basis of task decomposition and speed distribution // Huanan Ligong Daxue Xuebao/Journal South China Univ. Technol. (Natural Sci. South China University of Technology, 2016. Т. 44, № 3. С. 44–50. DOI: 10.3969/j.issn.1000-565X.2016.03.007.

Yasuda G. Distributed Controller Design for Cooperative Robot Systems Based on Hierarchical Task Decomposition // Int. J. Humanoid Robot. World Scientific Publishing Co. Pte Ltd, 2017. Т. 14, № 2. DOI: 10.1142/S0219843617500177.

Kawano H. Hierarchical sub-task decomposition for reinforcement learning of multi-robot delivery mission // Proceedings - IEEE International Conference on Robotics and Automation. 2013. С. 828–835. DOI: 10.1109/ICRA.2013.6630669.

Sutton R., Barto A. Reinforcement learning: An Introduction. Cambridge, MA: MIT Press, 1998. 322 pp.

R.S. Learning to predict by the methods of temporal differences. Mach Learn 3, 9–44 (1988). https://doi.org/10.1007/BF00115009.


Ссылки

  • На текущий момент ссылки отсутствуют.


(c) 2021 В. И. Петренко, Ф. Б. Тебуева, А. С. Павлов, М. М. Гурчинский